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Evolution of vibrational excitations in glassy systems

W. Götze and M. R. Mayr
Physik Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 14 July 1999!

The equations of the mode-coupling theory~MCT! for ideal liquid-glass transitions are used for a discussion
of the evolution of the density-fluctuation spectra of glass-forming systems for frequencies within the dynami-
cal window between the band of high-frequency motion and the band of low-frequency-structural-relaxation
processes. It is shown that the strong interaction between density fluctuations with microscopic wavelength and
the arrested glass structure causes an anomalous-oscillation peak, which exhibits the properties of the so-called
boson peak. It produces an elastic modulus which governs the hybridization of density fluctuations of meso-
scopic wavelength with the boson-peak oscillations. This leads to the existence of high-frequency sound with
properties as found by x-ray-scattering spectroscopy of glasses and glassy liquids. The results of the theory are
demonstrated for a model of the hard-sphere system. It is also derived that certain schematic MCT models,
whose spectra for the stiff-glass states can be expressed by elementary formulas, provide reasonable approxi-
mations for the solutions of the general MCT equations.

PACS number~s!: 64.70.Pf, 63.50.1x, 61.20.Lc
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I. INTRODUCTION

The excitation spectra of normal liquids are located in
THz band. But if the liquid can be supercooled, new spec
evolve within the GHz band as precursors of the glass tr
sition. These spectra are due to structural-relaxation p
cesses. In addition, there appear vibrational spectra for
quenciesv above 0.1 THz which are characteristic f
glasses and glass-forming liquids, namely high-freque
sound and the so-called boson peak. In this paper, a m
scopic theory shall be presented for these vibrational exc
tions.

High-frequency sound was discovered only recently
x-ray-scattering spectroscopy in various glass-forming s
tems: in aqueous solutions of LiCl@1#, glycerol @1,2#, silica
@3–6#, orthoterphenyl@2,7#, 0.4 Ca~NO3)2 0.6 KNO3 @8#,
and B2O3 @8#. Molecular-dynamics simulations identifie
these modes for models of argon glass@9,10#, ZnCl2 @11#,
and silica@12,13#. Five features of high-frequency sound c
be inferred from the cited work. First, the resonance posit
Vq

max of the dynamical structure factorSq(v) is a linear
function of the wave numberq,Vq

max5v`q, and this forq as
large as 4 –8 nm21. Here v` is the same high-frequenc
sound speed as known from Brillouin-scattering spectr
copy done for wave vectors which are about two orders
magnitude smaller. Second, the resonance widthGq exhibits
a quadratic wave-vector dependence:Gq5gq2. Hence den-
sity fluctuations propagate as known from the theory of e
tic media for wavelengths down to the order of the interp
ticle distances@1#. This holds with the reservation that th
spectrometer resolution of about 0.4 THz causes consi
able uncertainties in the data forVq

max andGq and that it is
difficult to separate the inelastic-scattering signal from
huge background due to the resolution-broadened quasi
tic scattering. The damping of ordinary sound in crystals
liquids depends strongly on temperature. As a third rema
able feature of high-frequency sound, one observes thaGq
exhibits only a weak temperature dependence. For silica
PRE 611063-651X/2000/61~1!/587~20!/$15.00
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orthoterphenyl, no temperature dependence ofGq could be
detected even thoughVq

max decreases with increasing tem
perature considerably@2,4,5,7#. For hydrodynamic sound, th
resonances exhaust the inelastic spectrum of the density
tuations. Contrary to this, one infers from the simulati
work @9,10,13# as a fourth property of high-frequency soun
that the resonances are superimposed on a broad int
background spectrum ofSq(v). As a fifth property, one
finds for the simulation results of silica@13# that the back-
ground spectrum exhibits a low-frequency threshold. T
conclusion is supported by the measurement of the x-r
scattering spectrum of densified silica@6#, which demon-
strates that there is a suppression ofSq(v) for small v rela-
tive to the hydrodynamics description for the dynamic
structure factor.

The so-called boson peak has been known for quite so
time since it can be detected in the spectra obtained by s
dard techniques. It was measured for all the above-cited
tems, for example by Raman scattering for LiCl@14# and by
neutron scattering for silica@3,15#. It was found by
molecular-dynamics simulations for ZnCl2 @16# and silica
@17,18#. Six features are typical for these peaks. First of a
the peaks are due to soft excitations. The positionvP of the
peak maximum is several times smaller than the Debye
quencyvD of the system. In silica the peak causes an
hancement of the so-called density of states by a facto
about 7 relative to the Debye spectrum@15#. Second, the
anomalous peak is due to quasiharmonic oscillations. Or
nally, this was concluded indirectly, since this assumpt
can explain the enhancement of the specific heat above
bye’s T3 law for temperaturesT near 10 K@15#. Normal-
mode analysis for a model of silica showed this result exp
itly @17#. Third, the peak is skewed. There seems to b
low-frequency thresholdV2 so that the high-frequency wing
of the peak extends further than the one on the lo
frequency side@3,14,18#. Fourth, the peak appears to be r
lated to some instability of the system sincevP and V2

decrease to zero upon heating the system towards some
acteristic temperatureTbp @14,18#. The mentioned four fea-
587 ©2000 The American Physical Society
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588 PRE 61W. GÖTZE AND M. R. MAYR
tures are also exhibited by the density of states of a harm
lattice with a random distribution of force constants@19#. As
a fifth property, one observes that a quasielastic relaxa
peak appears forT increasing towardsTbp, which eventually
buries the peak@14#. Sixth, the peak positionvP of the dy-
namical structure factor depends only weakly on wave ve
q if at all @3,18#.

The discussions of this paper are done within the fram
work of the mode-coupling theory~MCT! for the evolution
of glassy dynamics in simple systems. This theory is ba
on closed microscopic equations of motion for the dens
correlation functions@20,21#. Previous work done in this
context focused on elucidating the properties of
structural-relaxation phenomena, as described in R
@22,23# and the papers quoted therein. In the following,
will be shown that MCT also implies a theory for the evol
tion of anomalous-oscillation peaks~AOP! with the same six
properties specified in the preceding paragraph for the
called boson peak. Furthermore, it will be demonstrated
the AOP manifests itself in resonances of the dens
fluctuation spectra for wave vectors up to half the value
the Debye vectorqD , which exhibit the five features liste
above for high-frequency sound.

MCT deals with states of matter for which the structu
factorSq depends smoothly on wave vectorq and on control
parameters such as the temperatureT and densityr. The
equations of motion of the basic version of this theory, wh
will be used in this paper, exhibit a bifurcation from ergod
liquid dynamics to nonergodic glass dynamics ifT or r cross
critical valuesTc or rc , respectively. This bifurcation pro
vides a model for an ideal liquid-glass transition. In the e
tended version of MCT, the singular transition is replaced
regular crossover@23#. The crossover is connected with th
evolution of structural relaxation. Extensive tests of the MC
predictions have been performed in recent years. Let us
mention one group of such tests which are of particular
evance for the following discussions. The MCT results
the Debye-Waller factorsf q of the glass depend nontriviall
on q and onT or r. The results calculated for the hard-sphe
system@20# agree with the data measured for hard-sph
colloids @24#. Similarly, the f q calculated for a Lennard
Jones mixture@25# agree within 10% with the values de
duced from molecular-dynamics studies@26#. These assess
ments of the theory and many other tests, which are revie
in Ref. @27#, show that MCT describes properly some ess
tial features of structural relaxation. Since the MCT equ
tions are rather involved, most of the original work was do
first for schematic models. These are truncations of the la
set of equations to sets dealing with a few correlators o
The truncations are done with the intention to reduce
complexity of the mathematical machinery without losi
the essence of the features to be analyzed for the solutio
was noticed for schematic models dealing with a single c
relator that the spectra for the states forT!Tc or r@rc
exhibit a broad peak, which is due to a superposition
harmonic-oscillator spectra@22,28#. Tao et al. recognized
that the evolution of these peaks due to changes of con
parameters was similar to what they had measured for
boson peak of glassy aqueous LiCl@14#. Therefore, they con-
cluded that MCT implies a theory for the boson-peak sp
trum. This conclusion was corroborated by a series of st
ic
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ies, where solutions of schematic models were used
describe quantitatively spectra of glassy liquids@29–34#. The
fits described structural-relaxation spectra in windows
several orders of magnitude in size in addition to parts of
boson-peak spectra for high frequencies. In the followi
this earlier work will be extended to a systematic theory
the general MCT equations. This theory implies, in partic
lar, the suggestion that the characteristic temperatureTbp for
the boson-peak dynamics is identical withTc . Our results
will be demonstrated comprehensively for a model of t
hard-sphere system~HSS!.

The paper is organized as follows. In Sec. II the ba
equations for our calculations are formulated and the det
for the HSS work are specified. The evolution of structu
relaxation will be demonstrated in order to put the discuss
in the proper context with the theory of the glass transitio
Then, in Sec. III, the results for the evolution of th
anomalous-oscillation peak and for high-frequency sound
presented. These oscillation features of the MCT dynam
are described within a generalized-hydrodynamics appro
In Sec. IV the phenomena are explained within a schema
model analysis. In the concluding Sec. V our findings a
discussed.

II. BASIC EQUATIONS

A. A mode-coupling-theory model for a dense simple system

The basic quantity specifying the equilibrium structure
a simple system is the structure factorSq5^urqW u2&, which is
the canonical average of the squared modulus of the den
fluctuations of wave vectorqW :rqW5(aexp(iqWrWa)/AN. Herea

labels theN particles at positionsrWa in the system of density
r. The structure factor of amorphous systems depends on
wave-vector modulusq5uqW u only and it is usually expresse
in terms of the direct correlation functioncq :Sq51/(1
2rcq) @35#. The most relevant variables describing the d
namics of structure changes as a function of timet are the
density correlatorsfq(t)5^rqW

* (t)rqW&/Sq . The short-time as-
ymptote of these functions is specified by a characteri
frequency Vq :fq(t)512 1

2 (Vqt)21•••. In the small-
wave-vector limit one gets the dispersion law for soun
Vq5v0q1O(q3), wherev0 denotes the isothermal soun
speed. For general wave vectors one obtainsVq

25v2q2/Sq ,
wherev denotes the thermal velocity of the particles@35#. In
particular,v0

25v2/S0. Within the Zwanzig-Mori formalism
one can derive the exact equation of motion

f̈q~ t !1Vq
2fq~ t !1Vq

2E
0

t

mq~ t2t8!ḟq~ t8!dt850. ~1a!

The relaxation kernelmq(t) is a correlation function of fluc-
tuating forces@35#. Let us introduce here and in the follow
ing Fourier-Laplace transformations to mapfq ,mq and simi-
lar functions from the time domain onto the frequen
domain according to the convention fq(v)
5 i *0

`exp(ivt)fq(t)dt5fq8(v)1ifq9(v). The reactive part
fq8(v) and the dissipative part or the spectrumfq9(v) are
connected via a Kramers-Kronig relation. Equation~1a! is
equivalent to the representationfq(v)521/$v2Vq

2/@v
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PRE 61 589EVOLUTION OF VIBRATIONAL EXCITATIONS IN . . .
1Vq
2mq(v)#%. The fluctuation dissipation theorem connec

fq(v) with the dynamical susceptibilityxq(v):xq(v)
5@vfq(v)11#xq

T . Herexq
T5Sq /(rmv2), with m denoting

the mass of the particles, is the isothermal compressib
@35#. Therefore, Eq.~1a! is equivalent to

xq~v!/xq
T52Vq

2/@v22Vq
21Vq

2vmq~v!#. ~1b!

Within the MCT kernel,mq(t) is written as the sum of a
regular contribution and a mode-coupling contribution, d
scribing the cage effect of dense systems within Kawasa
factorization approximation. In this paper we neglect t
regular term. Hence one gets@20#

mq~ t !5Fq@f~ t !#, ~2a!

where the mode-coupling functionalFq , considered as a
functional of the dummy variable f̃ , is Fq@ f̃ #

5(kW1pW 5qWV(qW ,kWpW ) f̃ k f̃ p . The coupling coefficientsV(qW ,kWpW )
are determined by the equilibrium structure:

V~qW ,kWpW !5rSqSkSp@qW •~kWck1pW cp!#2/~2q4!. ~2b!

Let us approximate wave-vector integrals by Riemann su
obtained by choosing an equally spaced wave-vector gri
M terms. Thus the wave-vector indexq will be understood as
a label running from 1 toM. Correlatorsf(t), kernels, etc.
are considered asM-component vectors. After this discret
zation, the functional is a quadratic polynomial

Fq@ f̃ #5 (
kp51

M

Vq,kpf̃ k f̃ p . ~2c!

The positive coefficientsVq,kp are related trivially to
V(qW ,kWpW ) in Eq. ~2b!; for details the reader is referred to Re
@36#.

Equations~1! and ~2! are closed. They define a uniqu
solution for all parametersVq.0,Vq,kp>0. The solution has
all the properties of a correlator, i.e., thefq(t) are positive-
definite functions given by non-negative spectrafq9(v). And
the solutions depend smoothly onVq andVq,kp for all finite-
time intervals@37,38#. Thus, Eqs.~1! and ~2! formulate a
well-defined model for a dynamics. The model is related
the physics of liquids by specifyingVq andVq,kp in terms of
particle interactions and the control parametersr, T.

In the following, the results will be demonstrated for th
hard-sphere system~HSS!. The structure factor is indepen
dent of T in this case, so that the only nontrivial contr
parameter is the packing fractionw of the spheres of diam
eter d:w5pd3r/6. The structure factorSq is evaluated in
the Percus-Yevick approximation@35#. Wave vectors will be
considered up to a cutoff valueq* 540/d and they are dis-
cretized toM5300 values. The sphere diameter will be ch
sen as the unit of length,d51, and the unit of time will be
chosen such that the thermal velocity isv52.5.

B. Ideal glass states

The specified model exhibits a fold bifurcation@22#. For
small coupling constantsVq,kp the correlatorsfq(t) and ker-
nelsmq(t) decay sufficiently fast to zero for times tending
ty

-
’s
e

s,
of

o

-

infinity so that the spectrafq9(v) andmq9(v) are continuous
in v. Density fluctuations, which are created at timet50,
disappear for long times, and the same holds for the fo
fluctuations. The system approaches equilibrium for lo
times as expected for an ergodic liquid. This impli
limv→0vmq(v)50 and one concludes from Eq.~1b! that
the static susceptibilityx̂q5xq(v→0) agrees with the ther
modynamic susceptibility,x̂q5xq

T . For large coupling con-
stants, on the other hand, there is arrest of density fluc
tions for long times:fq(t→`)5 f q ; 0, f q,1. Thus the
perturbed system does not return to the equilibrium st
Similarly, there is arrest of the force fluctuations:mq(t
→`)5Cq.0. The numbersf q ,Cq are connected by the
equations@20#

f q5Cq /~11Cq!, Cq5Fq@ f #, q51,2, . . . ,M . ~3!

For this strong-coupling solution the kernel exhibits a ze
frequency pole, limv→0vmq(v)52Cq , and therefore one
concludes from Eq.~1b! that the static susceptibility is
smaller than the thermodynamic one,x̂q,xq

T , since x̂q

5xq
T/(11Cq). This is a signature for a nonergodic sta

@39#. The system reacts more stiffly than expected for a
nonical averaging. The dynamical structure factorSq(v)
5Sqfq9(v) exhibits a strictly elastic peak:Sq(v)
5pSqf qd(v)1 regular terms. This is the signature for
solid with f q denoting its Debye-Waller factor. Hence, th
strong coupling solution deals with a disordered solid; it is
model for an ideal glass state. If one increases the coup
constants smoothly from small to large values, one find
singular change of the solution from the ergodic liquid to t
nonergodic glass state, i.e., an idealized liquid-glass tra
tion. For simple-liquid models the transition occurs up
cooling at some critical temperatureTc or upon compression
at some critical packing fractionwc @20#. For the HSS model
under study one findswc'0.516 @36#. If w increases above
wc, the Debye-Waller factorf q increases above its value a
the critical point, called the plateauf q

c , as is demonstrated in
Fig. 1.

FIG. 1. Debye-Waller factorf q ~crosses! and one-tenth of the
Percus-Yevick static structure factorSq ~lines! of a hard-sphere
system~HSS! at the packing fractionsw50.600~a!, w50.540~b!,
and the critical packing fractionw50.516 ~c!. The inverse of the
particle diameter, 1/d, is chosen as a unit for the wave vectorq.
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590 PRE 61W. GÖTZE AND M. R. MAYR
In the theory of crystalline solids one defines susceptib
ties with respect to the restricted ensemble of a given
rested lattice. The MCT equations of motion allow for
similar formulation of the equations of motion for the gla
state@22#. To see this, one has to map the density correla
fq to new onesf̂q by

fq~ t !5 f q1~12 f q!f̂q~ t !. ~4a!

If one introduces new characteristic frequenciesV̂q by

V̂q
25Vq

2/~12 f q!, ~4b!

one obtains the short-time expansionf̂q(t)512 1
2 (V̂qt)21

••• in analogy to what was found forfq(t). Substitution of
these results into Eq.~1a! reproduces the MCT equations o
motion with fq , Vq, andmq replaced byf̂q , V̂q, andm̂q ,
respectively. Here the new relaxation kernels are relate
the original ones by

mq~ t !5Cq1~11Cq!m̂q~ t !. ~4c!

For the dynamical susceptibility one obtains the form
xq(v)5x̂q@11vf̂q(v)#. The new correlator has a vanish
ing long-time limit, f̂q(t→`)50; the Fourier-Laplace
transform exhibits the property limv→0vf̂q(v)50. Since
the equation of motion does not change its form, one get
the analog of Eq.~1b! the expression of the susceptibilit
xq(v) in terms of the polarization operatorm̂q(v):

xq~v!/x̂q52V̂q
2/@v22V̂q

21V̂q
2vm̂q~v!#,

x̂q5xq
T~12 f q!. ~4d!

Combining Eq.~3! with Eq. ~4c!, one concludesm̂q(t→`)
50, i.e., the new kernelm̂q(v) for the amorphous solid
exhibits a regular zero-frequency behavior: limv→0vm̂q(v)
50.

The mentioned equation of motion forf̂q(t) can be
closed by combining Eqs.~4a! and ~4c! with Eqs. ~2a! and
~2c!. One finds an expression of the new kernel as a n
mode-coupling functionalF̂ of the new correlators:

m̂q~ t !5F̂q@f̂~ t !#. ~5a!

F̂ is a sum of a linear termF̂(1) and a quadratic one
F̂(2),F̂q5F̂q

(1)1F̂q
(2) , where

F̂q
(1)@ f̃ #5(

k
V̂q,k f̃ k ,

V̂q,k52~12 f q!(
p

Vq,kpf p~12 f k!, ~5b!

F̂q
(2)@ f̃ #5(

kp
V̂q,kpf̃ k f̃ p ,

V̂q,kp5~12 f q!Vq,kp~12 f k!~12 f p!. ~5c!
-
r-

rs

to

as

w

As a result, equations of motion are produced, which are
the same form as the MCT equations discussed in Sec.
But in addition to the quadratic mode-coupling term, the
appears a linear one, and the values of the mode-coup
coefficients from Eq.~2b! are renormalized to the coeffi
cientsV̂q,kp .

The preceding Eqs.~5! are equivalent to equations rela
ing the density-fluctuation spectraf̂q9(v) with the kernel

spectram̂q9(v)5m̂q
(1)9(v)1m̂q

(2)9(v):

m̂q
(1)9~v!5(

k
V̂qkf̂k9~v!, ~5d!

m̂q
(2)9~v!5

1

p (
kp

E dv1E dv2V̂q,kp

3d~v2v12v2!f̂k9~v1!f̂p9~v2!. ~5e!

One can interpret Eqs.~4! and ~5! using the language of the
theory of boson fields, e.g., the phonon fields in crysta
x̂q(v)/x̂q is the field propagator andV̂q is the bare-phonon-
dispersion law. The kernelm̂q(v) is the phonon self-energy
Equations~5d! and ~5e! are golden-rule expressions for th
phonon-decay rates. Kernelm̂(1) describes elastic scatterin
of the phonon from the disorder, produced by the amorph
glass structure. Kernelm̂(2) deals with the decay of a phono
into two due to anharmonicities. The glass structure infl
ences the decay rates via the Debye-Waller factors wh
enter Eqs.~5b! and~5c! for V̂q,k andV̂q,kp , respectively. The
challenge is to evaluate this probabilitym̂q9(v) self-
consistently; the decay depends on the same phonons a
wants to study.

C. The glass-transition scenario

Figure 2 exhibits the evolution of the dynamics with a
increase of the packing fractionw. The wave vectorq
57.0, used in the lower panel, is close to the structu
factor-peak position where the static susceptibilityxq

T}Sq is
high, while the wave vectorq53.4, used in the upper pane
deals with fluctuations wherexq

T is very small~compare Fig.
1!. Figure 3 shows the equivalent information for the flu
tuation spectrafq9(v). In Ref. @40# a further set of diagrams
for the wave vectorq510.6 can be found.

The curves forw,wc with label n51 in Figs. 2 and 3
refer to the packing fractionw50.276. The correlators ex
hibit strongly-damped oscillations, and the ideal phon
resonances, to be expected formq50, are altered to broad
ened bumps in the spectra. If the packing fraction increa
into the interval 0.9wc<w,wc , the oscillatory features al
most disappear fort.0.2, and the shown spectrafq9(v)
decrease monotonously with increasingv. Simultaneously,
the decay to equilibrium is delayed to larger times. At t
critical point the correlators approach the plateauf q

c in a
stretched manner, as shown by the curves with labelc in Fig.
2. This process, which is called critical decay, leads to
strong increase of the fluctuation spectra with decreasing
quency, as shown in Fig. 3. Increasingw above the critical
packing fractionwc , the values for the long-time limitsf q



f
e
te

itio
-

a

o
a

.
b
e
io

t t

e

s
e
im

0.
on
n
ic
ha
c

ical
The
ly in
-

e in

the

to
ni-
ther
ider

cal
on.
ol-
. 4
r
-

d

an

m

i-
e
e
ar-

g
l

d

PRE 61 591EVOLUTION OF VIBRATIONAL EXCITATIONS IN . . .
increase. Since these limits are approached exponentially
for wÞwc @38#, the correlation spectra becom
v-independent for low frequencies. The value for this whi
noise spectrum increases ifw decreases towardswc ; this is a
precursor phenomenon of the glass melting at the trans
point. If w is sufficiently far abovewc , one observes oscil
lations again, as can be seen for thew50.6 result in the
upper panel of Fig. 2. In this case, the correlation spectra
no longer monotone functions of frequency. Forq53.4,
there occur two peaks forv.10. The narrow peak is due t
high-frequency phonon propagation. In addition, there is
anomalous-oscillation peak~AOP! for v'80. For q57, a
phonon peak is absent in the spectrum forw50.6 but an
AOP is present, as is shown in the lower panel of Fig. 3

The time scale for normal-state-liquid dynamics is set
the Debye frequencyvD . It is the same scale as for th
dynamics of the crystalline state of matter. For the discuss
of this normal condensed-matter dynamics, it is sufficien
consider a window of, say, two decades around 2p/vD .
This is demonstrated in Fig. 2 for the liquid state with lab
n51 or for the glass state with labeln53. If the time in-
creases from 0.01 to 1, the correlatorsfq(t) decrease from
0.9 to the long-time limit. All oscillations occur within thi
interval, which is also called the transient regime. The sp
tra for these states are located within a corresponding reg
of microscopic excitations, extending roughly between
and 300. For frequencies around and below 0.3, there is
white noise for the specified normal states. The glass tra
tion is connected with a dynamics, called glassy dynam
which occurs for times longer and frequencies smaller t
the ones characterizing the transient. For reasons which

FIG. 2. Density correlation functionsFq(t) of a HSS as a func-
tion of time t for the wave numbersq53.4 andq57.0. The curves
refer to the packing fractionsw50.6 andw5wc(16102n/3) with n
given in the figure. Herewc'0.516 denotes the critical packin
fraction. The curves with labelc are the solutions at the critica
point, which approach the long-time limitsf 3.4

c 50.36 and f 7.0
c

50.85. The units of length and time have been chosen here an
all the following figures so that the hard-sphere diameterd51 and
the thermal velocityv52.5.
ast
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n

re

n

y

n
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l

c-
e

3
ly

si-
s,
n
an

be understood by asymptotic expansions about the crit
point @22#, the dynamics is stretched over many decades.
glassy dynamics of the HSS is discussed comprehensive
Refs. @36,41#. It is impossible to view glassy dynamics ad
equately on linear scales fort or v. Conventionally, one
represents the results on logarithmic abscissas as don
Figs. 2 and 3. The bifurcation forw5wc or T5Tc also modi-
fies the transient dynamics. The subject of the paper is
study of these modifications.

III. EVOLUTION OF THE TRANSIENT DYNAMICS

A. Anomalous-oscillation peaks and high-frequency phonons

For a discussion of the transient motion, it is sufficient
consider dynamical windows of about two orders of mag
tude. These can be viewed more adequately on linear ra
than on logarithmic abscissas. There is no reason to cons
such fine tuning of control parameters relative to the criti
point, as is necessary for a study of structural relaxati
Therefore, let us extract the relevant information for the f
lowing discussion from Figs. 2 and 3 and replot it as Figs
and 5. Let us first consider the results for wave vectoq
57. For the packing fractionw50.60, the particles are lo
calized in such tight cages that the square rootdr
5A^dr 2(t→`)& of the long-time limit of the mean-square
displacement is only 5.0% of the particle diameter@41#. Thus
one expects the particles to bounce in their cages with
average frequency of the orderv'2pv/(4dr )578. This
explains qualitatively the oscillation around the equilibriu
value f 7.0 exhibited byf7.0(t) in Fig. 4 for t,0.3 and the
corresponding ‘‘peak’’ of the spectrum in Fig. 5. The max
mum positionvP'75 of this AOP is estimated well by th
crude formula. The AOP differs qualitatively from th
Lorentzian which one would expect for some damped h

in

FIG. 3. Fluctuation spectraFq9(v) of the correlation functions
shown in Fig. 2.
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592 PRE 61W. GÖTZE AND M. R. MAYR
monic oscillation. The low-frequency part of the peak d
creases more steeply with decreasingv so that there appear
some threshold nearv540. Below the threshold, the spe
trum is flatter than expected for the wing of a Lorentzian
w decreases to 0.567, the cages widen so thatdr 50.070
@41#. This explains the increase of the oscillation period e
hibited by curven53 in Fig. 4 and the corresponding down
ward shift of vP in Fig. 5. The shift is accompanied by
strong increase of the spectrum forv<10. The integral of
the inelastic spectrum also increases, reflecting the decr
of the elastic contributionp f q which is exhibited in Fig. 1.
The described trends continue ifw is decreased further to
0.540 ~curvesn54). The threshold and the spectral min
mum for small frequencies are now replaced by a cen
peak forv<20. The maximum of the AOP, estimated fro
dr 50.099 @41# as vP'40, is buried under the tail of the
central peak; it merely shows up as a shoulder. The c
relator still exhibits some small oscillation before it reach
its long-time limit f 7.050.96 for t.0.2, but it does not fall
below f 7.0 anymore. At the critical pointdr 5dr c50.183
@41# and so one estimates a positionvP'21. But the critical
decay manifests itself by the appearance of a long-time
of f7.0(t). The approach to the asymptotef 7.0

c 50.85 cannot
be demonstrated on the linear time axis used in Fig. 4. T
tail leads to a strong enhancement of the central peak, so
the AOP cannot be identified. This trend continues if a pa
ing fraction below the critical value is considered.

For the glass states, the correlatorsf3.4(t) exhibit weakly
damped oscillations which lead to nearly Lorentzian re
nances for the spectra. These excitations are analogou

FIG. 4. Some of the correlators from Fig. 2 on a linear time ax
The full lines refer to glass states (n53:w50.567; n54:0.540)
with the arrows indicating the long-time limitsf q5 limt→0Fq(t).
The dashed lines with labelc exhibit the critical decay (w
50.516) and the lowest dashed curves refer to the liquid state
n54 (w50.492).
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phonons in crystals. The softening of the glass with decre
ing w leads to a decrease of the phonon frequency, but Fi
demonstrates that for allw>wc the peak positions are lo
cated considerably above the maximum positionvP of the
AOP discussed in the preceding paragraph. One recogn
for the w50.60 result in Fig. 4 that the oscillations fort
<0.1 do not occur around the long-time limitf 3.4. Rather,
the oscillation center follows a curve discussed above for
bouncing in the cage. This is equivalent to the fact that
phonon resonance does not exhaust the spectrumf3.49 (v),
rather it is placed on top of some background. The ba
ground exhibits a similar threshold as discussed above
the AOP off7.09 (v), and with decreasingw it also follows
the same pattern as described for theq57.0 spectra. Appar-
ently, the dynamics forq53.4 illustrates a hybridization o
the phonon dynamics with the modes building the AOP. T
regular dependence of the MCT solutions on contr
parameter variations is the reason why the results in Fig
and 5 do not exhibit any drastic change ifw is shifted from
the glass state with labeln54, referring toe5(w2wc)/wc
50.0464, through the critical point to the liquid state wi
e520.0464. But upon shifting the state into the liquid, th
phonon resonances get buried under the relaxation spec

The variation of the spectra with changes of the wa
vector q is demonstrated in Fig. 6 for the stiff-glass sta
with the packing fractionw50.60. Forq<0.6, a single peak
of nearly Lorentzian shape exhausts the whole inelastic s
trum fq9(v). The resonance position follows the dispersi
law of high-frequency soundVq

max5v`q. Here, v` is the

sound speed expected from the glass susceptibilityx̂q50, Eq.
~4d!, v`5v0 /A12 f q50575.8. Also the half-width of the
resonance exhibits the quadratic wave-vector variation
pected for sound in an elastic continuum:Gq5gq2. The
single-peak shape of the spectra is found for all wave vec

.

or

FIG. 5. Fluctuation spectraFq9(v) of the correlators shown in
Fig. 4.
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PRE 61 593EVOLUTION OF VIBRATIONAL EXCITATIONS IN . . .
up to aboutqD/2, whereqD5(36pw)1/354.08 denotes the
Debye wave vector of the system. Also the linear dispers
law continues up to these large-q values as is demonstrate
in Fig. 7. However, forq>0.6 the resonance widthGq is
somewhat larger than expected by extrapolating

FIG. 6. SpectraFq9(v) ~solid lines! of a HSS at packing fraction
w50.60 for some wave numbersq. The dashed lines show th
generalized-hydrodynamics approximation. Forq51.0 and q
53.4, the dotted lines show the generalized-hydrodynamics
proximation with f q replaced byf q50.

FIG. 7. FrequencyVq5vq/ASq ~dashed line!, renormalized fre-

quency V̂q5Vq /A12 f q ~full line!, and position of the globa
maximumVq

max of the spectrum~diamonds! of a HSS at packing
fraction w50.60 as a function of the wave numberq. For wave
numbers at which two separate maxima of the spectrum can
identified, the frequency position of the peak with the lower inte
sity is marked by the open circles. The vertical bars mark the
quency intervals whereFq9(v) exceeds half of the maximum inten
sity of the spectrum. The arrows point to the positions of the De
wave numberqD5(36pw)1/354.08 and the Debye frequencyvD

5v`qD5309 corresponding to the high-frequency sound sp
v`575.8. For q53.4 (q57.0), one gets V3.4577.0 (V7.0

513.7) andV̂3.45167 (V̂7.0592.3).
n

e

asymptotic lawGq5g(Vq
max/v`)2, as is shown in Fig. 8. The

sound frequencyVq
max reaches the position of the maximu

of AOP at q'1.2 and extends considerably beyond th
value for largerq, as is shown forq51.8 in Fig. 6.

If Vq
max increases to the center of the AOP, the Ioff

Regel limit is approached; i.e., the sound frequency beco
of the same order as the resonance width. In this case,
bridization of high-frequency sound with the modes formi
the AOP becomes important. The sound resonance is
Lorentzian anymore, as demonstrated in Fig. 6. Forq51.4,
the threshold of the AOP nearv540 causes a shoulder o
the low-frequency wing of the sound peak. With increasi
q, a broad flat background spectrum is formed between
threshold andVq

max as shown in Fig. 6 forq51.8 and 2.2.
For wave vectors exceedingqD /2, the spectrum exhibits two
maxima. The one at lower frequency is due to the AOP. T
peak at higher frequencies is the continuation of the hi
frequency sound resonance, which is increased because
level repulsion effect, as demonstrated in Fig. 6 forq be-
tween 2.2 and 5.4. The high-frequency-phonon freque
Vq

max increases withq increasing up to aboutqD , and then it
decreases again ifq increases up to about 1.5qD . So the
dispersion follows the pattern expected for a crystal phon
near the Brillouin-zone boundary. The widthGq of the high-
frequency phonon for 2.5<q<5.0 varies only weakly with
changes ofq. Also the AOP maximumvP does not change
very much ifq increases from 2 to 5, as is demonstrated
the open circles in Fig. 7. In a large wave-vector interv
around the position of the first sharp diffraction peak of t
structure factorSq , the spectra do not exhibit a phonon pe
but the AOP only. The spectral shape varies only wea
with changes ofq, except nearq58.7; there a new splitting
in two peaks occurs.

In Fig. 9, the spectroscopic parametersVq
max and Gq of

high-frequency sound are presented as a function of
packing fraction. The resonance frequency decreases
decreasingw, reflecting the softening of the glass state up
expansion. Remarkably, the dampingGq does not vary much
with changes ofw.

p-

be
-
-

e

d

FIG. 8. Width at half maximumGq ~diamonds! of the high-
frequency resonance of the spectrumFq9(v) of the HSS for a pack-
ing fractionw50.60 as a function of the resonance-maximum p
sition Vq

max for various wave vectors. The straight line represe
the small-wave-vector asymptoteGq5g(Vq

max/v`)25K9(v
50)(Vq

max)2, whereK9(v50)50.001 82.
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594 PRE 61W. GÖTZE AND M. R. MAYR
B. A generalized-hydrodynamics description
for the glass-state dynamics

The description of hydrodynamic sound is obtained
coarse-graining correlation functions so that fluctuations
microscopic scales for the space-and-time variations are
eraged out. Coarse graining is equivalent to restricting fu
tions like V̂q or m̂q(v) to their leading-order Taylor coeffi
cient with respect to theirq and v dependence. In this
manner one gets from Eq.~4d! the hydrodynamics descrip
tion

xq
H~v!/x̂q52Vq

H2/@v22Vq
H21 ivGq

H#. ~6a!

Here the dispersion lawVq
H and the dampingGq

H are given
by

Vq
H5v`q, v`

2 5v0
2~11C!,

Gq
H5gq2, g5v`

2 K9~v50!, ~6b!

where the notationC5Cq50 and K(t)5m̂q50(t) is intro-
duced. Because of Eqs.~2a!, ~3!, and~4c!, one can expressC
and K(t) in terms of the mode-coupling functionalF0
5Fq50:

C5F0@ f #, K~ t !5$F0@f~ t !#2C%/~11C!. ~7!

An explicit expression for the new functionalF0 follows
from Eqs.~2a! and ~2b!:

F0@ f̃ #5E
0

`

Vkf̃ k
2dk, ~8a!

where the weight factorsVk>0 read

Vk5rSq50@Skk/2p#2Fck
21

2

3
~kck8!ck1

1

5
~kck8!2G .

~8b!

FIG. 9. High-frequency sound-resonance positionVq
max ~dia-

monds! and resonance widthGq ~circles! as a function of the pack
ing fraction, determined forq51.8. The crosses exhibit the max
mum positionvP of the AOP of the density-fluctuation spectru
for wave vectorq57.0.
y
n
v-

c-

The integral in Eq.~8a! is to be understood as a Rieman
sum over the wave-vector grid ofM terms as specified in
Sec. II A.

The hydrodynamics description is not suited to deal w
high-frequency sound and the AOP. In order to identify t
essence of these phenomena, a generalized-hydrodyna
description~GHD! shall be developed. It is obtained from
Eq. ~4d! via approximating the kernelm̂q(v) by its zero-
wave-vector limit:

xq
GHD~v!/x̂q52V̂q

2/$v22V̂q
2@12vK~v!#%. ~9!

This formula extends the hydrodynamics approximation
two respects. First and most importantly, the hydrodynam
damping constantig/v`

2 is replaced by the frequency
dependent functionK(v)5K8(v)1 iK 9(v). Second, the
full nontrivial q dependence ofV̂q is kept. According to Fig.
7, it is theq dependence ofV̂q which dominates that of the
whole density-fluctuation spectra. If one intends to descr
these spectra for wave vectors up to the inverse of the in
particle distances, one must not simplifyV̂q . However, if
one is merely interested in the description of high-frequen
sound so thatq is restricted to the regime belowqD/2, say,
one can replaceV̂q in Eq. ~9! by the hydrodynamics limit
Vq

H5v`q. In this case, formula~9! has a form often used in
acoustics, where@12vK(v)# is called the dimensionles
longitudinal elastic modulus. Let us also rewrite the mod
coupling formula~7! for K(t) more transparently in analog
to Eqs.~5!:

K~ t !5K (1)~ t !1K (2)~ t !, ~10a!

K (1)~ t !5E
0

`

Wk
(1)f̂k~ t !dk, Wk

(1)52~12 f q50!Vkf k~1

2 f k!, ~10b!

K (2)~ t !5E
0

`

Wk
(2)f̂k~ t !2dk, Wk

(2)5~12 f q50!Vk~12 f k!
2.

~10c!

In Fig. 6, representative MCT spectra for the glass sta
of the HSS are compared with the results of the generaliz
hydrodynamics approximation. For the regimeq<2, the de-
scription by Eq.~9! with V̂q5v`q is very good. This not
only holds for the treatment of the high-frequency-sou
resonance, but also for the background spectrum. But
generalized-hydrodynamics approximation yields reasona
results also for wave vectors extending up to and exceed
the value of the structure-factor-peak positionqmax'7. In
particular, the subtle hybridization of the phonon with t
modes underlying the AOP is treated semiquantitatively c
rectly. Hence, one concludes that Eqs.~9! and ~10! separate
the problem of the evolution of the transient dynamics in
two parts. The first part concerns the dependence on
wave vectors. This is determined entirely by the quantit
x̂q andV̂q . These functions are constructed from the stru
ture factorSq , whose dependence onq andw is well under-
stood.Sq determines the characteristic frequencyVq and the
thermodynamic susceptibilityxq

T . The MCT equations pro-
vide the glass form factorsf q , which are understood as we
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@20#. And the combination of this information yieldsV̂q and
x̂q via Eqs.~4b! and~4d!. Consequently, the remaining issu
of this paper is to provide the understanding of the ker
K(v).

Figure 10 exhibits the spectraK9(v) and also the reactive
parts of the modulusD(v)512vK8(v) for three represen
tative glass states. The spectraK9(v) are much simpler than
those for the correlators since phonon resonances are ab
This property is the essential result achieved by the Zwan
Mori theory, and MCT preserves this property. The spec
of the kernels consist of some broad background and
AOP. The AOP ofK9(v) has quite a similar form as dis
cussed in Sec. III A forf7.09 (v), and also its changes due
changes ofw are similar. Formula~9! describes the hybrid
ization of two ‘‘oscillators.’’ One is a bare phonon with dis
persionV̂q and the other is represented by the AOP sp
trum. The hybridization problem is analogous to the o
considered, for example, in the dynamical theory of lig
propagation in dielectric media. The bare phonon cor
sponds to the electromagnetic wave in vacuum and 1@1
2vK(v)# is the analog of the dielectric function. In lowe
order one gets two resonances of the coupled system w
frequenciesVq

max are obtained approximately as a solution

the equation (Vq
max/V̂q)

25D(V̂q
max) and the damping is esti

mated byGq5V̂q
2K9(V̂q

max). Elementary discussion of thes
equations with the aid of Fig. 10, which is left to the read
explains qualitatively the findings reported in Figs. 6–9.

A digression might be useful concerning the different ro
played by the two equations for the susceptibility~1b! and
~4d!. The crucial property of glassy dynamics is that kern
mq(v) in Eq. ~1b! depends strongly on frequencyv. In par-
ticular, this kernel has a large reactive partmq8(v). There-
fore, it makes no sense to try a hydrodynamics approxim
tion for Eq. ~1b!, based onmq(v)'mq(v50)5 imq9(v

FIG. 10. Reactive parts of the moduliD(v)512vK8(v) and
spectraK9(v) of the HSS for the packing fractionsw50.600
~solid!, w50.567 (n53, dashed!, andw50.540 (n54, dotted!.
l

ent.
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50). But let us consider a generalized-hydrodynamics
proximation, defined by ignoring the wave-vector depe
dence of kernelmq(v). Because of Eq.~2a!, this limit is
given byF0@f(t)# and thus it can be expressed byK(v) via
Eq. ~7!:

mq50~v!5@2C/v#1~11C!K~v!. ~11!

The kernelmq50(v) exhibits the pole@2C/v#, which is the
signature of the ideal glass state; other subtleties of
glassy dynamics are hidden inK(v). Substitution of Eq.
~11! for mq(v) in Eq. ~1b! reproduces Eq.~9!, except that
the renormalized frequencyV̂q is replaced by the approxi
mation to Eq.~4b!: Vq /A12 f q50. For our model of the
HSS structure, there are no serious wave-vector depende
of f q for q<qD /2. This means that high-frequency soun
and the background spectrum forq<2 can also be discusse
on the basis of Eq.~1b!. The dotted lines in Fig. 6 exhibit the
corresponding results forq51.0 and 3.4. However, Fig. 1
demonstrates that the relevant factor 12 f q51/(11Cq) var-
ies by more than 100% forq approaching and exceedingqD .
Therefore, the generalized-hydrodynamics approximat
based on Eq.~11! cannot be used to discuss, for examp
f7.09 (v). The superiority of the generalized-hydrodynami
approximation based on Eq.~4d! rather than on Eqs.~1b! and
~11! results from the fact that Eqs.~9! and~10! treat the glass
structure as it comes out from Eq.~3!, thus avoiding the
additional small-q approximationCq'Cq50.

C. The stiff-glass approximation

In this section Eqs.~1! and ~2! shall be considered fo
large coupling coefficientsVq,kp . Let us write symbolically
Vq,kp5O(1/h), so that various quantities can be classifi
according to their power of the small parameterh. For the
function Cq , which enters Eq.~3! for f q , one gets large
values:Cq5O(1/h). Thus 12 f q5O(h). Stiff-glass states
are characterized by Debye-Waller factors close to unity
is demonstrated by curve~a! in Fig. 1. Therefore, one con
cludes from Eqs.~5b!, ~5c!, ~10b!, and~10c! that the renor-
malized coupling coefficients decrease towards zero in
limit h→0:

V̂qk , Wk
(1)5O~h!, V̂q,kp ,Wk

(2)5O~h2!. ~12!

After eliminating the arrested glass structure as describe
Sec. II B, the remaining MCT equations~4d! and ~5! deal
with a weak-coupling situation if the system is in a de
glass state. Figure 11 demonstrates how the coeffici
Wq

(1,2) decrease with increasing packing fraction. Let us
troduce for later use also the integrated coupling coefficie

w1,25E
0

`

Wk
(1,2)dk. ~13!

For the three packing fractionsw 5 0.600 ~0.567, 0.540!
dealt with in Fig. 11, one findsw1 5 0.39 ~0.53, 0.64! and
w2 5 0.14 ~0.34, 0.78!, respectively. Let us recall from Sec
II B that V̂q,k and the derived quantitiesWk

(1) ,w1 specify the
interactions of density fluctuations with the arrested am
phous structure, whileV̂q,kp ,Wk

(2) ,w2 quantify two-mode-
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596 PRE 61W. GÖTZE AND M. R. MAYR
decay processes. One concludes furthermore that in the
h→0, the two-mode contributions to the kernelmq(v) get
suppressed relative to the one-mode contributions, in part
lar K (1)(t)5O(h), K (2)(t)5O(h2). This explains the resul
shown in Fig. 12: for the packing fractionw50.60, the one-
mode contributionK (1)9(v) provides the dominant part o

FIG. 11. Mode-coupling coefficientsWq
(1) andWq

(2) determining
via Eqs.~10! the scattering and decay contributions, respectively
the kernelK of the HSS glass states. The curves with labeln53
and n54 refer to the packing fractionsw50.567 andw50.540,
respectively. The insets show the coefficients forq,3 magnified
by a factor 100.

FIG. 12. The spectrumK9(v) of the kernel for the HSS at a
packing fractionw50.60 reproduced from Fig. 10~full line!. The
dashed and the dotted curves exhibit the one-mode contribu

K (1)9(v) and the two-mode contributionK (2)9(v), respectively.
The full line with label R denotes the Rayleigh contributio
R0v2 (R052.4310211) magnified by a factor 0.643104.
it

u-

the total spectrumK9(v). The role played by the two con
tributions K (1) and K (2) is utterly different. The former
yields the AOP and the latter provides a background sp
trum.

To explain the AOP, a stiff-glass approximation shall
analyzed which is indicated by superscripts~1!. It is defined
by dropping the two-mode contribution tom̂q(v) in Eq.
~4d!. Substituting the result into the formulafq

(1)(v)

5@xq
(1)(v)/x̂q21#/v, one gets

fq
(1)~v!521/$v2V̂q

2/@v1 inq1V̂q
2mq

(1)~v!#%,
~14a!

mq
(1)~v!5F̂q

(1)@f (1)~v!#. ~14b!

In order to ease the discussion at the end of this sectio
friction term proportional tonq>0 has been included in th

formulas. It is equivalent to complementingmq
(1)9(v) by a

white-noise spectrum. Unless emphasized otherwise,
may read the formulas withnq50. Equations~14! define a
special model for the MCT and all general theorems quo
in Sec. II A apply. If one would treat the mode-couplin
coefficientsV̂qk>0 in Eq.~5b! for the functionalF̂q

(1) as free
parameters, Eqs.~14! could exhibit glass transitions. For th
discussion of such bifurcations, theM by M matrix Cqk
5$]Fq@ f #/] f k%(12 f k)

2, q,k51,2, . . . ,M , which is called
the stability matrix, plays an essential role. Glass transiti
are characterized by the spectral radiusE of matrix C to be
unity, and for all other states one getsE,1 @22,38#. One
checks that the stability matrix of the complete theory
defined by Eqs.~4! and ~5! is the same as the one for th
stiff-glass approximation, defined by Eqs.~14!. Therefore,
Eqs.~14! with the coefficientsV̂qk defined in Eq.~5b! do not
exhibit glass-transition points anymore; in particular,fq

(1)(t
→`)50. Let us note also that matrixC is equivalent to
matrix V̂qk5(12 f q)Cqk /(12 f k). Therefore, also the spec
tral radius ofV̂ is E. Hence the resolventS5(12V̂)21 ex-
ists.

The v50 limit of Eqs. ~14! yields the linear equation
(k(dqk2V̂qk)mk

(1)(v50)5 i (kV̂qknk /V̂k
2 . For the relevant

casenk50, one concludes that the zero-frequency spectr
of the kernel vanishes. Therefore,

mq
(1)9~v→0!5Rqv2, ~15a!

and this implies for the low-frequency behavior of the co
relator

fq
(1)9~v→0!5~p/2!@d~v2Vq

H!1d~v1Vq
H!#1Rqv2.

~15b!

Hence, one finds Rayleigh’s law: the scattering probabi

mq
(1)9(v) of low-frequency phonons from static density flu

tuations varies proportional tov2.
Let us simplify the stiff-glass approximation by embe

ding it into the generalized-hydrodynamics description. A
cording to Sec. III B, this amounts to approximatingmq

(1)(v)
by its q50 value, denotedK (1)(v). Similarly, one should
write for the so far not specified friction coefficientnq

o

on
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5tV̂q
2 . Let us denote the stiff-glass susceptibility resulti

from Eq. ~14a! within the generalized-hydrodynamics a
proximation byxq

SGA(v)5x̂q@fq
(1)(v)v11#, so that

xq
SGA~v!52x̂qV̂q

2/$v22V̂q
21vV̂q

2@ i t1KSGA~v!#%.
~16!

The problem is reduced to evaluating the kernelKSGA(v)
from the equation

KSGA~v!52E
0

`

dk Wk
(1)

3†1/„v2V̂k
2/$v1V̂k

2@ i t1KSGA~v!#%…‡.

~17!

Again, the general theorems of MCT apply. However, sin
the mode-coupling coefficients have been altered by sub
tuting V̂0k for V̂qk , the stability matrix has been change
Therefore, it cannot be excluded that the spectral radiuE
reaches unity for the simplified theory. This would be
artifact of the generalized-hydrodynamics approximation a
Eqs.~16! and ~17! must not be used in such a case.

The generalized-hydrodynamics approximation simplifi
Eq. ~15a! by the replacement ofRq by its q50 limit to be
denoted byR0 :KSGA9(v→0)5R0v2. The coefficientR0 is
obtained by substituting Eq.~15b! into Eq. ~10b!. Using Eq.
~8b!, one gets

R05r~S0 /v`!3c0
2f 0~12 f 0!2/@8p~12w1!#. ~18!

The Rayleigh spectrum is included in Fig. 12. A huge ma
nification was necessary to make this contribution visible
the scale ofK9(v).

One infers from Fig. 7 that forq.2 the variations of the
renormalized frequencyV̂q with changes of the wave vecto
q are suppressed relative to those ofVq . One can get an
estimation of thek.qD contribution to the integral~17! by
replacingV̂k by some averaged valueṼ. Figure 7 suggests
Ṽ5120 forw50.60. Introducingn5tṼ2 and indicating the
results of the specified estimation by a tilde, Eq.~16! is
equivalent to

fq>qD

SGA ~v!'f̃~v!521/$v2Ṽ2/@v1 in1Ṽ2K̃~v!#%.

~19a!

According to Fig. 11, thek<qD contributions to the integra
in Eq. ~17! can be neglected, and thus this equation for
kernel simplifies to

KSGA~v!'K̃~v!5w1f̃~v!. ~19b!

The solution of Eqs.~19! for K̃ and f̃ reads

K̃~v!5@v1v22z~v!2

1Az~v!22v2
2 Az~v!22v1

2 #/~2v!, ~20a!

z~v!25v~v1 in!/Ṽ2, v6516Aw1. ~20b!
e
ti-

d

s

-
n

e

The coupling constantw1 takes over the role of the spectr
radius of the stability matrix. In order avoid artifacts of th
various approximations leading to the results~20!, the for-
mulas can be applied only forw1<1. Figure 13 demon-
strates that Eqs.~20! with n50 describe the AOP ofK9(v)
for the HSS withw50.60 reasonably well. One could im
prove the description by trying better choices forṼ, but this
would not lead to any new insight.

Figure 11 shows that also for the evaluation of the integ
in Eq. ~10c!, the contributions fork,qD can be ignored. A
leading estimation for the two-mode kernel can thus be
tained asK̃ (2)(t)5w2f̃(t)2. Using Eq.~19b! one gets, there-
fore,

K̃ (2)~v!5~1/p!~w2 /w1
2!E K̃~v2v8!K̃9~v8!dv8.

~21!

The zero-frequency limit leads to a trivial integral with th
resultK̃ (2)9(v50)5t5(w2 /Aw1)8/(3pṼ). Going back to
Eq. ~10a!, one concludes that the background term due
K (2)(t) could have been taken into account in its white-no
approximation. This leads to the extension of the equation
motion by adding a friction termn5Ṽ2t. Such an extension
is obtained by including this term in the formulas, as w
done already in Eq.~14a! and the following formulas. The
dotted line in Fig. 13 demonstrates that thereby all qual
tive features ofK9(v) are understood. A further improve
ment is obtained by dropping the white-noise approximat
for the correction termK̃ (2). This is done by replacingv
1 in by v1K̃ (2)(v) in Eq. ~20b!. Figure 13 demonstrate
that thereby a more satisfactory treatment ofK9(v) is ob-
tained.

The periodic continued fraction forf̃(v), which is de-
fined by Eqs.~19!, can be related to a Hilbert-Stieltjes inte
gral: *21

1 dxA12x2/(x2z)5p(2z1Az21Az11). Thus

one can express the normalized susceptibilityx̃(v)
5@vf̃(v)11# in the form

FIG. 13. The full line reproduces the spectrumK9(v) from Fig.
12. The dashed line exhibits the stiff-glass-approximation re

K̃9(v) from Eqs.~20! with Ṽ5120, w150.388,n50. The dotted
line is the extension of this approximation by incorporatingn

5Ṽ2K̃ (2)9(v50)'23. The dot-dashed line shows the extensi

with in replaced by the kernelṼ2K̃ (2)(v) from Eq. ~21!.



rp
gh

i
th

th
m
r

se

or

ffi

th

s

al

fi-

nd

II

the
-
po-

e

the
ng
g-
line

-
the
ed

tiff-
for-
he
rip-

de-
fer
ut
li-

ron-
-

of

z

ric-
ne

t
c-

en
e-
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x̃~v!5E
v2

2

v1
2

dj r̃~j!xj~v!, ~22a!

r̃~j!5A~v1
2 2j!~j2v2

2 !/~2pw1!, ~22b!

xj~v!52Ṽ2/@v22Ṽ2j1 ivn#. ~22c!

For the stiff-glass states, the AOP is obtained as a supe
sition of undamped-harmonic-oscillator spectra. The wei
distribution r̃(j) for the oscillators with frequencyAjṼ ex-
tends fromV25v2Ṽ to V15v1Ṽ. If the approximate
description is extended so that two-mode interactions are
corporated as the white-noise-background spectrum for
fluctuating-force kernels, the results remain valid, but
oscillator dynamics has to include a Newtonian friction ter
quantified byn>0. A better description of the spectra fo
frequencies large compared toV2 is obtained by acknowl-
edging that the friction forces do not exhibit a white-noi
spectrum. This can be done by replacingin in Eq. ~22c! by
the kernelK̃ (2)(v) from Eq. ~21!. The glass instability for
T→Tc or w→wc is connected with the approach ofw1 to
unity, i.e., with the thresholdV2 approaching zero.

IV. SCHEMATIC-MODEL DISCUSSIONS

A. Models for anomalous-oscillation peaks

The simplest MCT models deal with a single correlat
say f(t). Equation~1a! remains valid with the subscriptq
dropped. Generalizing Eq.~2a!, the kernelm(t) is written as
a mode-coupling function, specified by a series with coe
cientsvn>0:

m~ t !5F@f~ t !#5 (
n51

`

vnf~ t !n. ~23!

The long-time limit f 5f(t→`) obeys Eq. ~3!: f
5F@ f #/(11F@ f #). For the glass states one can carry out
transformation discussed in Sec. II B to get correlatorsf̂(t)
and kernelsm̂(t) with vanishing long-time limits. Equation
~4! and ~5a! remain valid with the subscriptq dropped. The
new functionalF̂ is again a power series. For the renorm
ized Taylor coefficients, one gets, in analogy to Eqs.~5b! and
~5c!, v̂n5(12 f )n11

†]nF@ f #/] f n
‡/n!, n51,2, . . . . The

limit of a stiff glass is obtained if at least one of the coef
cientsvn becomes large. The numberh512 f can be used
as small parameter for the classification of terms. One fi

v̂n5O(hn). Let us change the notation tow1,25 v̂1,2 so that

w15~12 f !2(
n51

`

nvnf n21,

w25
1

2
~12 f !3(

n52

`

n~n21!vnf n22. ~24!

The stiff-glass approximation can be defined as in Sec. I
by approximating the kernel by the leading termm̂(t)
5w1f̂(t). Let us change the notation tof̂5f̃ and V̂5Ṽ,
so that
o-
t

n-
e

e
,

,

-

e

-

s

C

f~ t !5 f 1~12 f !f̃~ t !, Ṽ25V2/~12 f !. ~25!

With K̃(t)5m̂(t), one arrives at the pair of equations~19!.
Let us consider as an example the model specified by

functional F@ f #5v1f 1v2f 2. It was introduced as the sim
plest one which can reproduce all possible anomalous ex
nents of the general MCT@22,28#. Liquid-glass transitions
occur on a line in thev1-v2 parameter plane. The line, wher
the long-time limitf jumps from zero tof c512l.0, is a
piece of a parabola with the representationv1

c5(2l
21)/l2, v2

c51/l2, 0.5<l,1. In Ref. @42#, diagrams
analogous to Figs. 2 and 3 can be found, which exhibit
evolution of glassy dynamics and the AOP upon shifti
(v1 ,v2) from the weak-coupling regime to the stron
coupling one. As a path in the parameter plane, a straight
was chosen: v1,25v1,2

c (11e), l50.7, e561/4n, n
50,1, . . . . Thefull lines in Fig. 14 reproduce three glass
state results. They are similar to what is demonstrated for
HSS in the lower panel of Fig. 5. The reason was explain
in Sec. III C: these HSS spectra are described by the s
glass approximation and this approach yields the same
mulas ~19! as derived above for the schematic model. T
dashed lines in Fig. 14 represent the leading-order desc
tion by Eqs.~19! with n50 andw1 ,Ṽ determined by Eqs.
~24! and ~25!. The dotted lines incorporaten5Ṽ2K̃ (2)9(v
50) evaluated from Eq.~21!. The results for then54 spec-
tra show that the extended stiff-glass approximation can
scribe the dynamics reasonably well for states which dif
from the instability point by only 6.25%. It was pointed o
@42# that the schematic-model solutions in Fig. 14 fit qua
tatively to the boson-peak scenario as reported for neut
scattering data. It was shown@43# that the AOP of the speci
fied model can be used to fit the boson-peak spectrum
orthoterphenyl as it was measured@44# by Raman scattering
at T5245 K5Tc245 K for frequencies between 100 GH
and 700 GHz.

Usually, a one-component schematic model is too rest
tive to deal quantitatively with experimental data. But o

FIG. 14. Fluctuation spectraF9(v) for the one-componen
schematic model defined in Sec. IV A for a mode-coupling fun
tional F@ f #5v1f 1v2f 2 ~solid lines! andV51. The states refer to
the glass with distance parameterse51/4n, n50,1,2 ~compare
text!. The dashed line exhibits the stiff-glass approximation giv
by Eqs. ~20! with n50. The dotted lines show the extended d
scription including an5” 0, which was evaluated from thev50
limit of Eq. ~21!.
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can construct more elaborate schematic models with the
tention to mimic more features of the MCT. The perspect
of such an approach shall be indicated by results for
model used recently for the interpretation of scattering sp
tra of glassy liquids@29,31–34#. The model extends that o
the preceding paragraph by introducing a second correla
to be denoted byfs(t). The equation of motion has th
standard form of Eq.~1a! with Vq , fq , andmq replaced by
Vs, fs, andms, respectively. The mode-coupling function
for ms is characterized by a single coupling constantvs>0:

ms~ t !5vsf~ t !fs~ t !. ~26!

The model was introduced for the description of tagg
particle motion in liquids@45#.

The long-time limit f s5fs(t→`) is obtained from Eq.
~3! as f s5121/( f vs). The transformation to a new cor
relator and a new kernel with vanishing long-time limits c
be done as explained in Sec. II B:Ṽs25Vs2/(12 f s);
f̂s(t)5@fs(t)2 f s#/(12 f s). From Eq.~4c! one gets

m̂s~ t !5Ks
(1)~ t !1Ks

(2)~ t !, ~27a!

Ks
(1)~ t !5uf̂~ t !1wsf̂

s~ t !, Ks
(2)~ t !5 v̂sf̂~ t !f̂s~ t !,

~27b!

u5~12 f ! f s/ f , ws5~12 f s!, v̂s5~12 f s!~12 f !/ f .
~27c!

The stiff-glass approximation for the two-compone
model requires (12 f ) and (12 f s) to be small so that
Ks

(2)(t) can be neglected compared toKs
(1)(t). Let us denote

the results by a tilde. The equations of motion, which s
cialize Eqs.~14!, read

f̃s~v!521/$v2Ṽs2/@v1w~v!1Ṽs
2K̃s~v!#%,

~28a!

K̃s~v!5wsf̃
s~v!, w~v!5Ṽs2uf̃~v!. ~28b!

This result is equivalent to Eqs.~19! except that the friction
constantin is generalized to a friction functionw(v). The
solution can therefore be written in the form of Eq.~20a!
with z(v)2 andv6 replaced, respectively, by

zs~v!25v@v1w~v!#/Ṽs2, v6
s 516Aws. ~29!

In particular, Eqs.~22! hold with the appropriate change i
the notation. The susceptibility is a superposition w
weight r̃s(j) of the functions

xj
s~v!52Ṽs2/@v22Ṽs2j1vw~v!#. ~30!

This is a harmonic-oscillator susceptibility where the int
action with the background is included via a friction functio
w(v), dealing with the AOP of the surroundings.

Figure 15 shows solutions for three characteristic choi
of Vs. The results refer to the stiff glass state discussed
Fig. 14 for the labeln50. The couplingvs510/f was cho-
sen so that 12 f s50.10. The stiff-glass approximation re
sults are shown as dashed lines. ForVs50.15V, the reso-
n-
e
e
c-

r,

-

t

-

-

s
in

nance of the second correlator is located so far below
AOP of the first correlator that there appears an AOP
fs9(v) quite similar to that discussed for the one-compon
model. In this case,w(v) in Eq. ~30! only produces a renor
malization of the frequenciesṼsAj and a strongly sup-
pressed background. ForVs5V, the resonances ofxj

s are
shifted upward because of level repulsion and the hybrid
tion yields a broad background extending from the thresh
of the AOP of the first correlator to the AOP position of th
second one. ForVs50.6V, the spectrumfs9(v) exhibits an
AOP whose low-frequency threshold and maximum posit
are close to those for the AOP off9(v). The hybridization
causes a suppression of the high-frequency spectrum. Th
fore, the AOP infs9(v) is more asymmetrical than the pea
in f9(v). The hybridization results have similarities to tho
discussed in connection with Fig. 6. Indeed, it was explain
in Sec. III C that the phonon modes are influenced by
large-wave-vector modes which built the AOP, but that th
is no feedback of the phonons for wave vectorq,qD on the
AOP. This is the same situation as treated by the speci
schematic two-component model.

B. Random-oscillator models

To get more insight into Eqs.~22!, the following problem
shall be considered: evaluate the averaged dynamical sus
tibility x(v) of an ensemble of independent harmonic osc
lators. The oscillators are specified by their massm and by
their frequenciesV(j).0. The latter depend on a rando
variablej. Its distribution shall be denoted byr(j); r(j)
>0, *r(j)dj51. It is no restriction of generality to assum
V(j)25a1bj, b.0; butj has to be restricted from below
to insure stability. Let us choose as a minimum forj the
value21. Thus one can writeV(j)25V0

2@11w12Awj#,
so thatV0.0 defines the frequency scale andw,0<w,1
characterizes the minimum frequencyV25V0(12Aw).
Denoting averages by bars,A(j)5*A(j)r(j)dj, the quan-
tity of interest is

FIG. 15. SpectraFs9(v) of the solutions for the second cor
relator of the two-component model defined in Sec. IV A withvs

chosen so thatf s50.9. The first correlator needed as an input f
the memory kernel~26! is the one corresponding to then50 curve
in Fig. 14. The dashed lines are the stiff-glass approximations, E
~28!, to these curves. The arrows indicate which axis correspond
the curves.
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x~v!52m/@v22V~j!2#. ~31!

Let us define a characteristic frequencyV.0 by V22

5V(j)22. It specifies the static susceptibilityx̂5m/V2. If
brackets denote canonical averaging, defined with respe
the oscillator HamiltonianHj5@(P2/m)1mV(j)2Q2#/2,
one gets for the fluctuations of the momentum^P2&5m2v2

and of the displacement^Q2&5v2/V(j)2, wherev denotes
the thermal velocity. The time evolution of some variab
A5A(Q,P) can be written as usual in terms of a Liouvillia
L:A(t)5exp(iLt)A, where iLA5(]A/]Q)P/m
2(]A/]P)mV2(j)Q.

To embed the problem into the standard framework
correlation-function theory, a scalar product shall be int
duced in the space of variablesA,B, . . . by (AuB)
5^A* B&. The vectorsuQ) and uP) are orthogonal and the
normalization reads (QuQ)5v2/V2, (PuP)5m2v2. The Li-
ouvillian is Hermitian. The displacement correlator shall
defined by

f~ t !5„Q~ t !uQ…/~QuQ!. ~32!

Its Fourier-Laplace transform can be written as a Liouvillia
resolvent matrix element: f(v)5(Qu@L
2v#21uQ)/(QuQ). This quantity can now be represente
within the Zwanzig-Mori formalism as a double fractio
@35#: f(v)521/$v2V2/@v1V2m(v)#%. The memory
kernel m(v) is the Fourier-Laplace transform of th
fluctuating-force correlator

m~ t !5„F~ t !uF…/~v2V2m2!. ~33a!

HereF is the projection of the force] tP52mV2(j)Q per-
pendicular touQ) and uP):

F5m@V22V2~j!#Q. ~33b!

The time evolution in Eq.~33a! is generated by the reduce
Liouvillian L8,F(t)5exp(iL8t)F, whereL85PLP and P
denotes the projector perpendicular touQ) anduP). The sus-
ceptibility is connected with the correlator as usu
x(v)/x̂5@vf(v)11#,

x~v!52m/@v22V21vV2m~v!#. ~33c!

This exact representation ofx(v) in terms of kernelm(v) is
the analog of Eq.~4d!.

The essential point in the MCT is the approximation
the kernelm(t) as a mode-coupling functional. The proc
dure @46# consists of two steps. First, one reducesF to the
projection on the simplest modes contributing, and these
the pair modes uQj):F(t)→uQ(t)j)(QjuQj)21(QjuF).
Second, one factorizes averages of products into produc
averages:„Q(t)juQj…→„Q(t)uQ…j̄2. As a result, one finds

m~ t !5w1f~ t !, w15j$@V2/V2~j!#21%2/ j̄2. ~34!

These formulas are the analog of Eqs.~4! and ~5!. They
allow the approximate evaluation ofx(v) from the given
input informationV2 andw1.

Equations~33c! and~34! are equivalent to Eqs.~19! with
Ṽ5V5V̂, and therefore the approximation forx(v) can be
to

f
-

-

,

f

re

of

written as noted in Eqs.~22!. Thus, the presented MCT de
livers an approximation for the oscillator susceptibiity~31!
in the sense that the general distributionr(j) is approxi-
mated by r̃(j)52A12j2/p. If r(j)52A12j2/p is
chosen, one can check thatṼ5V0 and w5w1. In this
case MCT reproduces the exact result. Let us add
the naive factorization for the kernel,„F(t)uF…
.m2

„Q(t)uQ…@V22V(j)2#2, would not reproduce the exac
result for the specified example; rather one would obtain
~34! with an overestimatedw15w1w2.

V. CONCLUSIONS

Within mode-coupling theory~MCT!, a critical tempera-
tureTc and a corresponding critical packing fractionwc were
introduced as the equilibrium-thermodynamics parame
characterizing the evolution of glassy dynamics. For sili
for example,Tc is near 3300 K@47#, and therefore all ex-
periments quoted for this system in Sec. I deal withT!Tc
states. In this paper, primarily states are studied whereT is so
far belowTc andw so far abovewc that structural-relaxation
phenomena do not dominate the dynamics within the w
dow of interest. These states are referred to as stiff-g
states. The dynamical window considered is the one
normal-condensed-matter physics, i.e., spectra are discu
within a two-decade regime for the frequencyv around and
below the Debye frequencyvD . For the stiff-glass states, th
spectra of thea-relaxation process are located at frequenc
smaller than vD /100 and therefore it does not matt
whether or not the quasielastica peaks of the spectra ar
treated as elastic ones. Hence it is legitimate to use the b
version of the MCT which treats the crossover nearTc as a
sharp transition to an ideal glass atTc . The derivation of the
MCT formulas, in particular that of Eq.~2b! for the mode-
coupling coefficients, is based on canonical-averaging pr
erties. For temperatures below the calorimetric gla
transition temperatureTg , the system is in a quenche
nonequilibrium state. From a rigorous point of view the a
plication of MCT is therefore restricted to the regimeT
.Tg . However, experiments on high-frequency sound a
on the boson peak do not indicate anomalies forT nearTg .
Thus it seems plausible that the results of the present p
can be used also for an interpretation ofT,Tg data.

A major finding of this paper is that there are ‘‘peaks’’ o
the density-fluctuation spectra for wave vectorsq exceeding
about half of the Debye vectorqD , which are quite different
from what one would expect for phonon resonances in
uids or crystals. These peaks, which we refer to as
anomalous-oscillation peaks~AOP!, show the properties o
the so-called boson peak listed in Sec. I. First, as show
Fig. 7, the positionvP of the peak maximum is several time
smaller thanvD . In this sense the AOP is due to soft mode
Second, according to Eqs.~22!, the AOP is a superposition
of harmonic-oscillator spectra, where different oscillators
specified by different frequencies. This can be shown si
there is a well-defined strong-coupling limit of the MC
equations, referred to as the stiff-glass limit, where the eq
tions of motion simplify so much that all features of the AO
can be worked out by analytical calculations~Sec. III C!. In
this limit the continuous spectra are purely inhomogene
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ones. Third, there is a lower cutoffV2 of the frequency
distribution. This causes the low-frequency wing of the AO
to decrease more steeply with decreasingv than expected for
a Lorentzian. The high-frequency wing extends further
than the low-frequency one so that the AOP is skew
Fourth, as the packing fraction decreases also the frequen
vP andV2 decrease, and simultaneously the intensity of
spectrum increases. This is shown in the lower panel of
5 and in Fig. 10. The critical point is characterized by t
thresholdV2 approaching zero. In this sense one conclu
that the evolution of the AOP is related to the dynami
instability predicted by MCT forw5wc or T5Tc . In order
to understand a further property of the AOP, one has to
knowledge that the leading correction to the stiff-glass
sults introduces a damping for the oscillators. It is due to
decay of an oscillator mode into two modes caused by
harmonicities. A simplified treatment of this phenomen
only leads to a modification of the formulas by the introdu
tion of a friction constantn in Eq. ~22c!. Thus the peak is
superimposed on a flat background and the sharp thresh
are changed to some smooth but rapid crossover. Not m
is modified in the center of the AOP spectrum providedn is
not too big. But with decreasingw or increasingT, the ratio
n/V2 becomes much larger than unity so that the oscillat
of low frequency get overdamped. As a result, one obta
the explanation of the fifth property, namely a central rela
ation peak is formed if (w2wc)/wc is about 0.1. In this case
the AOP merely appears as a shoulder of the quasiela
spectrum as shown by then54 curve in the lower panel o
Fig. 5. Shifting the parameters even closer to the instab
point, the AOP gets buried under the wing of the quasiela
peak. The elementary formulas~19! and ~20! describe this
feature of the MCT solutions reasonably well forw ap-
proachingwc up to about 5%. The cited results are qu
general and are obtained even for the simplest schem
MCT models, as is demonstrated in Fig. 14. Sixth, in a f
ther refinement of the description one acknowledges that
glass compressibility has a wave-vector dependence.
enters in the form of a characteristic frequencyV̂q , which
can be considered as a bare phonon dispersion of the a
phous solid. It exhibits a maximum forq near qD and a
minimum near the structure-factor-peak positionqmax, which
in turn is near 2qD . This V̂q-versus-q curve is similar to the
one for the characteristic frequencyVq of the liquid which
plays an essential role in the MCT equations~1a! and ~1b!.
However, the oscillations of the Debye-Waller factor, sho
in Fig. 1, imply via the renormalization formula~4b! that the
ratio of the maximum to the minimum frequency is mu
smaller forV̂q than forVq . This can be inferred in detail by
comparing the full line in Fig. 7 with the dashed one. The
fore, the maximum position of the AOP is only weak
q-dependent. Summarizing, we suggest that the MCT of
AOP provides the basis of a first-principle explanation of
so-called boson peak.

The formulated theory for the AOP has a transparent
terpretation. MCT explains in the first place the formation
an effectively arrested density distribution. This amorpho
structure is characterized by the same quantity used to c
acterize crystalline structures, viz., by the Debye-Waller f
tor f q . Within the same formalism which leads tof q , the
t
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equations of motion for the density fluctuations of this stru
ture are obtained~Sec. II B!. Such unified treatment of the
glass structure and its dynamics should be a feature of e
microscopic theory since it is the same array of partic
which forms the frozen structure and which carries the fl
tuations. This unified treatment is especially important if o
intends to study the dynamics near the instability limit of t
structure. The equations of motion describe the decay
fluctuations into pairs and also the scattering of fluctuatio
from the arrested structure. For the stiff-glass states one fi
the latter processes to overwhelm the former, as discusse
connection with Eq.~12!. In the stiff-glass limit, one finds
that the particles are localized in their cages and harmo
oscillations of the particles with their cages are a good
scription of the relevant modes. In this extreme limit the to
susceptibility is that of a distribution of independen
oscillator responses, where the distribution of oscillator f
quences is caused by the distribution of sizes and shape
the cages. MCT provides an approximation of the distrib
tion of the frequency squares, Eq.~22b!, and characterizes
the drift of the distribution with changes of control param
eters. It provides also results for the corrections to this li
iting result, namely the appearance of homogeneous
broadening due to mode decay and coupling of the osc
tions leading to weak wave-vector dependences of the A
parameters.

One achievement of MCT is the possibility to expla
homogeneous line-broadening effects via a golden-r
mechanism as is suggested by Eqs.~5d! and~5e!. This aspect
was used above in connection with the evaluation of
oscillator dampingn due to two-mode decay and also
connection with the derivation of Rayleigh’s law, Eq.~15a!.
However, the interpretation of Eqs.~5d! and~5e! in the spirit
of a golden rule is quite misleading, if the transition pro
abilities V̂ are so large that the self-consistent solutions
qualitatively different from the ones obtained by a lowe
order approximation. In such cases, the formulas can lea
an approximation theory for an inhomogeneous ‘‘linewidth
phenomenon. It was shown explicitly in Sec. IV B that MC
provides an approximation approach towards this phen
enon, and there is an example for which MCT reproduces
exact result for the inhomogeneous spectrum. The MCT
the AOP is based on the fact that this theory can han
homogeneous and inhomogeneous spectra within the s
framework.

A side remark might be helpful. According to MCT, a
structural relaxation features are independent of the detai
the microscopic equations of motion@23,40#. Therefore, the
existence of an AOP is of no relevance for understand
glassy dynamics or the glass transition. But the AOP p
vides an interesting piece of information on the arrested g
structure. The AOP is the result of a mapping of the ca
distribution on the frequency axis. The mapping is done fr
the configuration space on the time axis via Newton’s eq
tions of motion and canonical averaging followed by
Fourier-cosine transform to get a spectrum.

The arrest of density fluctuations at the ideal liquid-gla
transition is driven by the ones with a wave numberq near
the structure-factor-peak positionqmax'2qD , since for these
wave numbers the liquid compressibilityxq

T}Sq is large. The
compressibility of simple dense liquids forq,qD is very
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small and therefore excitations with wave vectors from t
domain, which corresponds to the first Brillouin zone of t
crystalline phase, are not important for the evolution
structural relaxation and the glass transition. For the sa
reason one concludes that scattering processes of de
fluctuations withq,qD are irrelevant for the formation o
the AOP, as is demonstrated in Fig. 11. The soft comple
which cause the AOP are constructed from fluctuations w
wave numbers near and aboveqmax. These conclusions ar
based on the MCT results for the Debye-Waller factorsf q .
In order to produce the spectral peak in Fig. 12,f q has to be
that large as shown by the uppermost curve in Fig. 1. T
curve corresponds toe5(w2wc)/wc50.16. In Fig. 3 of
Ref. @48#, a measurement off q for a hard-sphere colloid is
documented for 3<qd<13 ande50.11. Since these exper
mental findings are close to the curve~a! in Fig. 1, we argue
that the MCT results on the glass structure are in reason
accord with the experimental facts. Let us emphasize tha
above reasoning refers to densely packed systems of sp
cal particles. Obviously, in more complicated systems, s
as silica, the cages are not so tight as in a HSS. There
one can expect the soft configurations to be more subtle
discussed in this paper. The results in Sec. IV A for the tw
component schematic model indicate that the AOP can
more structured than obtained for the HSS. For systems
a low coordination number, one can also exp
intermediate-range-order effects to play an important ro
They enter, e.g., the coupling vertices in Eq.~2b! via the
prepeaks ofSq @16#. Whether MCT can handle the micro
scopic features leading to the AOP in complicated syste
such as ZnCl2 is unclear at present. In particular, it is uncle
whether MCT can contribute to understanding why the
son peak is more pronounced in strong glass formers suc
silica than in fragile glass formers such as orthoterpheny

The preceding interpretation of the AOP suggests t
these peaks appear in the spectra of all probing varia
coupling to density fluctuations of short wavelength. But d
ferent probing variables will weight the oscillating com
plexes differently and therefore the shape of the AOP and
positionvP of the peak maximum will depend somewhat
the probe. Let us consider two examples. The first one d
with the tagged particle correlatorfq

s(t)5^rqW
s(t)rqW

s* &. Here

rqW
s(t)5exp„iqW rW(t)… denotes the density fluctuation of

marked particle with position vectorrW(t). The spectrum

fq
s9(v) determines the incoherent neutron-scattering cr

section. An exact equation for this quantity has the sa
form as Eq.~1a! with fq , mq , andVq

2 replaced byfq
s , mq

s ,
andVq

s25v2q2, respectively. The essential MCT equation
again the representation of the kernel as the mode-coup
functional mq

s(t)5(kpVq,kp
s fk(t)fp

s(t). The coupling coef-
ficientsVq,kp

s are determined by the structure factorSq . The
mentioned equations have been derived and solved for
Lamb-Mössbauer factorsf q

s5fq
s(t→`) of the HSS in Ref.

@20#. Details of the discretization can be found in Ref.@41#.
We have solved the cited equations forfq

s(t), and Fig. 16
exhibits fluctuation spectra for the packing fractionw
50.60 for three wave vectors around the structure-fac
peak position. The shape of the peaks is only wea
q-dependent and the intensity varies nearly proportiona
s
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q2. This finding is in agreement with neutron-scattering
sults @49# and with molecular-dynamics-simulation resu
for ZnCl2 @16# and silica@50# .

The second example is related to the velocity correla

C(t)5^rẆ(t)rẆ&/(3v2). For a harmonic system, its spectru
determines the density of statesg(v)52C9(v)/p, normal-
ized by *0

`g(v)dv51. The velocity correlator can be ex
tracted fromfq

s @35#. If one introduces the kernelm(0)(t)
5 limq→0q2mq

s(t), one getsC(v)521/@v1v2m(0)(v)#.
The localization lengthr s

2 , defined via the long-time limit of
the mean-squared displacement^dr 2(t→`)&56r s

2 , deter-
mines the small-q asymptote off q

s and the pole of the kerne
in the glass:f q

s512(qrs)
21O(q4), m(0)(v)521/(vr s

2)
1O(v0). One finds that the density of states vanishes p
portional tov2 for small frequencies as expected for an ela
tic continuum g(v)5g0v21O(v4), g05m(0)9(v
50)(2r s

4/pv2) @22#. Figure 17 exhibits a result for the HSS
The v2 law is obtained only for frequencies below th
thresholdV2 of the AOP. For larger frequencies the dens
of states is enhanced relative to the asymptotic law. T
enhancement reaches a maximum of a factor of about 5
the position of the AOP maximum, and it is about a facto
at the maximum ofg(v). For larger frequenciesg(v) gets

FIG. 16. Rescaled tagged-particle-density-fluctuation spe

106Fq
s9(v)/q2 of the HSS for the packing fractionw50.600 at

wave numbersq53.4 ~solid!, q57.0 ~dashed!, andq510.6 ~dot-
ted!.

FIG. 17. Density of statesg(v) of a HSS, calculated for the
packing fraction w50.60. The dashed line showsg(v)59.2
31028v2, describing the density-of-states asymptote at small
quencies. The arrow marks the Debye frequencyvD5309 for the
longitudinal sound.
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suppressed as required by the normalization condition.
found enhancement phenomenon is in qualitative agreem
with the experimental results reported for silica in Ref.@15#
and with the simulation data in Ref.@13#. There is a consis-
tency problem for the MCT. The prefactor in thev2 law
should beg085vD

23@112(vD /vD8 )3#, wherevD8 denotes the
Debye frequency for transversal sound. Sinceg0 was calcu-
lated without any explicit reference to transversal sound,
approximations underlying MCT will lead tog05” g08 . We
did not study the solutions of the MCT equations for tran
versal excitations@20,22# in order to calculatevD8 . There-
fore, we do not know the size of the errorg02g08 . But if one
estimatesvD5vD8 , one getsg08510.231028, which is
close to the valueg059.231028. This suggests that trans
versal excitations are taken into account to some extent
plicitly in the formulas formq

s(t).
It was already suggested earlier in connection with a d

cussion of soft-configuration models for glasses that the
son peak should be understood as a result of quasiharm
oscillations of the system characterized by some distribu
of oscillator potentials@51–54#. Obviously, the presen
theory is consistent with these semi-phenomenological
proaches. In particular, the existence for a low-freque
threshold for the boson-peak spectrum had been predicte
Ref. @52#. In Ref.@44#, Raman spectra of glassy systems ha
been interpreted as a superposition of oscillator suscepti
ties analogous to what is formulated in Eqs.~22!. But there
are two qualitative differences between this fit procedure
the present theory. In Ref.@44#, the distributionr̃(j) is taken
as temperature independent, while Eq.~22b! for r̃(j) de-
scribes the softening of the glass structure upon heating
in particular, its instability forT reachingTc . In Ref. @44#,
the T dependence of the spectra is introduced by replac
the damping constantn by a Debye function quantified by
temperature-dependent relaxation time. This viscoela
theory leads to a Debye peak as a quasielastic spect
Equations~22! do not lead to a quasielastic Debye spectr
as was explained in connection with Figs. 3 and 5. In Re
@55,56#, the effective-medium theory for percolation pro
lems is modified to a theory for the displacement susce
bilities of a disordered harmonic lattice. For the suscepti
ity, an expression similar to Eq.~16! is obtained where
kernel KSGA(v) also describes the self-consistent treatm
of phonon scattering by the disorder. Even though the eq
tion for KSGA(v) in Refs.@55,56# is quite different from Eq.
~17!, the solution looks similar to the dashed line in Fig. 1
However, the Rayleigh contribution in Ref.@56# is about 106

times larger than the result based on Eq.~18!. It was criti-
cized@54# that in Refs.@55,56#, the boson peak is constructe
from fluctuations with wave vectorsq,qD since thereby the
role of long-wavelength fluctuations is overestimated. He
the cited harmonic-lattice theory does not appear to be c
patible with the theory studied in this paper.

Sound is obtained due to the interplay of inertia effe
and stresses, which are built up due to compressions.
interplay is governed by the conservation laws for mass
momentum. The low-lying sound excitations interfere w
other low-lying modes such as structural relaxation and
oscillations building the AOP. Sound modes with wave ve
tor q<qD and their interactions are not important for th
e
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explanations of structural relaxation@20#. In connection with
Fig. 11, it was shown that they are also not relevant for
explanation of the AOP. Therefore, sound can be discus
within the standard procedure of acoustics by introducin
modulus. This procedure comes out within MCT as was
plained in connection with Eq.~9!, where @12vK(v)# is
proportional to the complex modulus. Consequently, all
sults on high-frequency sound, discussed in this paper,
implications of the preceding results forK(v). In this sense
one concludes that high-frequency sound is a manifesta
of the AOP. Let us contemplate the scales for frequencyv
and wave numberq in order to be able to correlate the MC
results with some data. The boson-peak maximum obse
for silica at 1 THz@3# shall be compared with the maximum
position vP575 for thew50.60 results for the AOP. The
best resolution widthGexp achieved by the recent x-ray
scattering experiments is 1.5 meV, i.e., in the units of t
paperGexp'30. The structure factor peak positionqmax 5
1.5 Å21 for silica is to be compared with the value near
for the HSS. Hence the wave-vector unit used is ab
2 nm21. Scattering experiments with the resolutionGexp
have been done for silica forq between 1 nm21 and
4 nm21 as can be inferred from Ref.@5# and the papers
quoted therein. X-ray-scattering experiments with largeq
are done with a resolution considerably worse than the c
Gexp. Thus the following discussion shall be restricted
wave vectors betweenq50.5 andq52'qD/2. This wave-
vector interval corresponds to the interval for the sound f
quencyV̂q5v`q between about 40 and 150, as is shown
Fig. 7.

The first property of high-frequency sound follows fro
the upper panel of Fig. 10. On the resolution scaleGexp, the
sound-dispersion law isVq

max5V̂q5v`q. Here the sound
speedv` is the one determined by theq→0 limit of the
glass compressibilityx̂q . The frequency dependence of th
reactive part of the modulus 12vK8(v) implies deviations
from the strict linear law forVq

max. According to Fig. 7, the
deviations are predicted to occur on a 10% level. Thus t
should be measurable if the resolutionGexp could be reduced
by, say, a factor 5. Here some reservation has to be m
MCT does not contribute to the understanding of the str
ture factorSq , rather it takes this quantity from other theo
ries. Errors inSq will cause errors in the MCT results. It i
notoriously difficult to calculate the small-q behavior ofSq .
The Verlet-Weiss theory yields different results forSq than
the used Percus-Yevick theory, and this causes also a sm
q behavior off q which differs from the one exhibited in Fig
1 @57#. Therefore, the Verlet-Weiss theory will also lead
different V̂q which might change the results forVq

max. It is
not known how reliably the Percus-Yevick or the Verle
Weiss theory describe the structure for packing fractions
large as 0.60.

If one smears out the spectrumK9(v) shown in Fig. 10
with a resolution curve of widthGexp, one gets a result which
is nearly v-independent within the dynamical window o
interest:v`

2 K9(v)5g. This explains the second property o
high-frequency sound reported for the x-ray-scattering
sults of silica @4,5# and other systems@1,7,8#: the sound
damping exhibits the hydrodynamic wave-vector depende
Gq5gq2. Consequently, one can describe the whole m
sured spectrum by the damped-oscillator formulas~6a! and
~6b! @1,2,5#, albeit up to some background. The latter appe
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as white if viewed with resolutionGexp. Naturally, it is dif-
ficult to separate this background from the one caused
other effects of the experimental setup. If one acknowled
the frequency dependence ofK(v), exhibited in Fig. 10, one
concludes that the formulaGq}q2 is oversimplified. Figure 8
demonstrates the prediction that a reduction ofGexp by a
factor of 3 should be sufficient to detect an increase ofGq

above theGq}Vq
max2 asymptote ifq varies between 0.8 an

2.
A crucial experimental finding is that the damping para

eter Gq does not vary much with changes of temperatur
This shows@4,7# that the sound damping mechanism can
be due to anharmonicity-induced mode decay as known
phonons in crystals, nor due to structural relaxation effect
studied in Brillouin-scattering spectroscopy of glassy liqui
The fast sound detected by neutron scattering@58# and
molecular-dynamics simulation@59# in water, for example,
occurs in a dynamical window where water exhibits
a-relaxation process but no vibrations underlying a bos
peak @60,61#. Therefore, the fast-sound damping in wa
depends appreciably on temperature and this dependenc
be described reasonably within a viscoelastic model@59#.
The insensitivity of the high-frequency-sound damping
changes of control parameters such as temperature or de
is indeed the third specification of the MCT results as sho
in Fig. 9. In agreement with the assumptions of the pheno
enological theories in Ref.@52,54#, MCT explains the damp-
ing to be due to absorption of the sound mode by the os
lations building the AOP. The AOP depends on cont
parameters, as explained in connection with Figs. 10 and
ThereforeGq is not strictly independent of control param
eters. However, changes of density or temperature prima
redistribute the spectrum ofK9 and thus the spectrum in th
center of the AOP does not change much. But, if the res
tion Gexp could be reduced, a more subtle prediction could
tested. ForVq

max near 140,Gq is w-independent even if the
system is driven as close to the critical point as shown
curve n54 in Fig. 10. For smallerVq

max, the widthGq in-
creases with decreasingw, and this is due to the appearan
of the quasielastic relaxation peak ofK9(v). But for larger
Vq

max, the damping constant should decrease with decrea
w; in this case the softening of the system reduces the den
of states for high-frequency-sound-decay processes. Le
emphasize that all MCT results discussed in this paper
solely based on the wave-vector and control-parameter
pendence on the structure factorSq . The explanation of the
modulus and its drift with control-parameter changes
specified semiquantitatively by the three numbers on
which are specified in connection with Eqs.~20! and ~21!.
Therefore, our results are predicted to be valid for all s
tems with a structure factor similar to that of our HSS mod
in particular for Lennard-Jones systems or van der Wa
liquids such as, e.g., orthoterphenyl.

The AOP ofK9(v) causes via Kramers-Kronig relation
a frequency-dependent reactive partK8(v). This implies
that the sound resonance cannot exhaust the spectrum.
trary to what holds for hydrodynamic sound, there must b
background spectrum. This is the fourth feature specified
high-frequency sound in Sec. I. Obviously, the detection
such a background is difficult in view of many other reaso
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producing backgrounds for the experimental scattering
nals. However, as explained in connection with the das
lines in Figs. 13 and 14, MCT implies a fifth property: fo
T!Tc or w@wc , there is an effective low-frequency thres
old V2 for the background. Such a threshold can be use
discriminate the background due to density-fluctuation
namics from the one due to experimental artifacts. There
mathematically equivalent manner to formulate the phys
of the background, which is better adopted to the pres
problem @10,17#. The dynamical structure factorS(q,v)
5Sqfq9(v), considered as a function ofq for fixed fre-
quency v, represents the average of the square of
density-fluctuation Fourier components which oscillate w
frequencyv. The coherent contribution to these fluctuatio
leads to a peak atqv5v/v` . There is only a small contri-
bution for q,qv , since it is very difficult to excite long-
wavelength fluctuations in densely packed systems. But th
is a structureless background forq.qv extending to high
values ofq. It is caused by the large-q density fluctuations
produced by the distortions of the wave front due to t
arrested amorphous glass structure. Figure 18 exhibi
MCT result for the HSS, which is in qualitative agreeme
with the simulation results reported in Ref.@10#.

All specified MCT results for high-frequency sound an
the AOP can be described well by the combination of
elementary formulas~9! and ~20! with K(v)'K̃(v). If re-
gimes are considered, where relaxation can be ignored c
pletely, one can use Eq.~20b! with n50. In this case, only
the two parametersṼ andw1 need to be specified in order t
quantify the result. FunctionK̃(v) replaces the damping pa
rameterg of the hydrodynamics-theory result, Eqs.~6!. In-
troducing the third parametern, the range of applicability of
the results can be extended so that structural-relaxation
cursors are included. We suggest using the cited formulas
an analysis of inelastic-x-ray-scattering data for hig
frequency sound and of data for the evolution of the bos
peak in glassy systems.

The derivation of the MCT equations is definitive an
leads to a well-defined model for a nonlinear dynamics. T
point of view adopted in this paper is the following: resu

FIG. 18. Dynamic structure factorS(q,v)5SqFq9(v) of the
HSS for a packing fractionw50.60 as a function of the wave num
ber q at some fixed frequenciesv. The Debye vector isqD54.08;
threshold and maximum of the boson peak are located neav
545 and v585, respectively~compare Fig. 12!. The lines are
guides to the eye.
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for the model are derived to provide explanations of pre
ously unexplained features of the dynamics of liquids a
glasses and to predict new results to be tested by future
periments. However, the ‘‘approximations’’ leading to th
mode-coupling expression for the fluctuating-force kern
Eqs.~2!, are uncontrolled and therefore the range of valid
of MCT is not understood. Let us conclude this paper
pointing out four open questions concerning the foundat
of MCT, which are of particular relevance for the study
vibrational excitations. The first problem concerns the
sence of any influence of transversal excitations on the
namical structure factor. The results~15a! and~18! for Ray-
leigh’s law account for the scattering of a longitudin
phonon into some other longitudinal wave, while the e
pected contribution due to conversion into transversal so
waves is missing. Similarly, the spectrum of the AOP is d
to longitudinal excitations only, while Horbachet al. @18#
report that transversal modes influence the boson peak.
second problem concerns the mode-coupling approxima
for the fluctuating-force kernelmq(t) for short times. For a
Lennard-Jones system, Eqs.~2a! and ~2b! yield an overesti-
mation of mq(t50) compared to the values known fro
Monte Carlo results. A procedure for eliminating this pro
lem was suggested in Ref.@62#, but it is unclear whether it
can be used for supercooled systems. One also expects
the mode-coupling kernel should be complemented by so
regular term@20#. In a simple treatment, this would lead
an additional friction termnqḟq(t) in Eq. ~1a!. For a dilute
n
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system,nq could be calculated in the binary-collision ap
proximation. The third unsolved problem is the evaluation
nq for the dense systems under consideration. Such a fric
term would imply an additive correction to the friction con
stantn in Eqs.~20! and~22!. If the resultingn would be too
big, the AOP could disappear in favor of a quasielastic sp
trum due to overdamped oscillations. Whether this happ
might depend on the structure of the system. As a fou
unsettled question, a cutoff problem has to be mentioned.
the large packing fractionw50.60, the results of our calcu
lations would change somewhat if the used cutoff wave v
tor q* d540 were increased. This is due to the slow decre
towards zero of the direct correlation functioncq of the HSS
for q tending to infinity. Since the introduction of a cutoff i
equivalent to a softening of the hard-sphere potential, i
conceivable that in the stiff-glass limit our model is rathe
model for argon than for hard spheres. It would be desira
to examine whether this cutoff dependence disappears
conventional regular interaction potential is used. A serio
bottleneck for such examination is the necessity to obt
reliable results forcq for strongly supercooled liquids.
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