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Evolution of vibrational excitations in glassy systems
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The equations of the mode-coupling the@§CT) for ideal liquid-glass transitions are used for a discussion
of the evolution of the density-fluctuation spectra of glass-forming systems for frequencies within the dynami-
cal window between the band of high-frequency motion and the band of low-frequency-structural-relaxation
processes. It is shown that the strong interaction between density fluctuations with microscopic wavelength and
the arrested glass structure causes an anomalous-oscillation peak, which exhibits the properties of the so-called
boson peak. It produces an elastic modulus which governs the hybridization of density fluctuations of meso-
scopic wavelength with the boson-peak oscillations. This leads to the existence of high-frequency sound with
properties as found by x-ray-scattering spectroscopy of glasses and glassy liquids. The results of the theory are
demonstrated for a model of the hard-sphere system. It is also derived that certain schematic MCT models,
whose spectra for the stiff-glass states can be expressed by elementary formulas, provide reasonable approxi-
mations for the solutions of the general MCT equations.

PACS numbses): 64.70.Pf, 63.50+x, 61.20.Lc

[. INTRODUCTION orthoterphenyl, no temperature dependencd’pfcould be
detected even thoug:;ﬁ[]“é’IX decreases with increasing tem-
The excitation spectra of normal liquids are located in theperature considerab|®,4,5,7. For hydrodynamic sound, the
THz band. But if the liquid can be supercooled, new spectraesonances exhaust the inelastic spectrum of the density fluc-
evolve within the GHz band as precursors of the glass trartuations. Contrary to this, one infers from the simulation
sition. These spectra are due to structural-relaxation prowork[9,10,13 as a fourth property of high-frequency sound
cesses. In addition, there appear vibrational spectra for fréhat the resonances are superimposed on a broad intense
quenciesw above 0.1 THz which are characteristic for Packground spectrum of(w). As a fifth property, one
glasses and glass-forming liquids, namely high-frequencyinds for the simulatiqn _results of silidd 3] that the back- .
sound and the so-called boson peak. In this paper, a micrdround spectrum exhibits a low-frequency threshold. This
scopic theory shall be presented for these vibrational excita€onclusion is supported by the measurement of the x-ray-
tions. scattering spectrum of densified sili¢g], which demon-

High-frequency sound was discovered only recently bystra’[es that there is a suppressiorSgfw) for small w rela-

x-ray-scattering spectroscopy in various glass-forming Sys'gve to the hydrodynamics description for the dynamical

tems: in aqueous solutions of LiCl], glycerol[1,2], silica structure facior.

The so-called boson peak has been known for quite some
[3-6], orthoterphenyl[2,7], 0.4 CaNQy); 0.6 KNG [8], 46 since it can be detected in the spectra obtained by stan-
and BO; [8]. Molecular-dynamics simulations identified

dard techniques. It was measured for all the above-cited sys-
these modes for models of argon glaSs10], ZnCh [11],  tems; for example by Raman scattering for LiCH] and by
and silica[12,13. Five features of high-frequency sound can neytron scattering for silica3,15). It was found by
be inferred from the cited work. First, the resonance posmor}nolecular—dynamics simulations for ZnCJ[16] and silica
Qg% of the dynamical structure factdg,(w) is a linear [17 18, Six features are typical for these peaks. First of all,
function of the wave numbeg,¢'=v..q, and this forgas  the peaks are due to soft excitations. The positignof the
large as 4—-8 nm'. Herev,, is the same high-frequency peak maximum is several times smaller than the Debye fre-
sound speed as known from Brillouin-scattering spectrosgquencywp of the system. In silica the peak causes an en-
copy done for wave vectors which are about two orders ohancement of the so-called density of states by a factor of
magnitude smaller. Second, the resonance wigffexhibits  about 7 relative to the Debye spectrib]. Second, the
a quadratic wave-vector dependenEg:=yg®. Hence den- anomalous peak is due to quasiharmonic oscillations. Origi-
sity fluctuations propagate as known from the theory of elasnally, this was concluded indirectly, since this assumption
tic media for wavelengths down to the order of the interparcan explain the enhancement of the specific heat above De-
ticle distanceq1]. This holds with the reservation that the bye’s T® law for temperature§ near 10 K[15]. Normal-
spectrometer resolution of about 0.4 THz causes considemode analysis for a model of silica showed this result explic-
able uncertainties in the data foxg®* andT'y and that it is itly [17]. Third, the peak is skewed. There seems to be a
difficult to separate the inelastic-scattering signal from thdow-frequency threshol€ _ so that the high-frequency wing
huge background due to the resolution-broadened quasielast the peak extends further than the one on the low-
tic scattering. The damping of ordinary sound in crystals orfrequency sidd3,14,18. Fourth, the peak appears to be re-
liquids depends strongly on temperature. As a third remarklated to some instability of the system sineg and () _
able feature of high-frequency sound, one observeslihat decrease to zero upon heating the system towards some char-
exhibits only a weak temperature dependence. For silica anacteristic temperatur&,, [14,18. The mentioned four fea-
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tures are also exhibited by the density of states of a harmonies, where solutions of schematic models were used to
lattice with a random distribution of force constafi®]. As  describe quantitatively spectra of glassy liquid8—34. The
a fifth property, one observes that a quasielastic relaxatiofits described structural-relaxation spectra in windows of
peak appears fdF increasing toward3,,, which eventually ~ several orders of magnitude in size in addition to parts of the
buries the peakl4]. Sixth, the peak positiowp of the dy- boson-peak spectra for high frequencies. In the following,
namical structure factor depends only weakly on wave vectofis earlier work will be extended to a systematic theory for
q if at all [3,18]. the general MCT equations. This the.or'y implies, in particu-
The discussions of this paper are done within the framel@r, the suggestion that the characteristic temperafygéor
work of the mode-coupling theorfMCT) for the evolution th_e boson-peak dynamics is |dent|_cal witl. Our results
of glassy dynamics in simple systems. This theory is baseWill be demonstrated comprehensively for a model of the
on closed microscopic equations of motion for the density1ard-sphere systefiSs. .
correlation functions[20,21]. Previous work done in this ~ The paper is organized as follows. In Sec. Il the basic
context focused on elucidating the properties of the€quations for our calculations are formulated and the details

structural-relaxation phenomena, as described in RefdOr the HSS work are specified. The evolution of structural
[22,23 and the papers quoted therein. In the following, it _relaxatlon will be demorjstrated in order to put the d|scu§_s|on
will be shown that MCT also implies a theory for the evolu- in the proper context with the theory of the glass transition.
tion of anomalous-oscillation peak&OP) with the same six  Then, in Sec. lll, the results for the evolution of the
properties specified in the preceding paragraph for the s@nomalous-oscillation _pea_k and for high-frequency sound are
called boson peak. Furthermore, it will be demonstrated tha@résented. These oscillation features of the MCT dynamics
the AOP manifests itself in resonances of the density&ré described within a generalized-hydrodynamics approach.
fluctuation spectra for wave vectors up to half the value ofi" Sec. IV the phenomena are explained within a schematic-
the Debye vector,, which exhibit the five features listed Model analysis. In the concluding Sec. V our findings are
above for high-frequency sound. discussed.

MCT deals with states of matter for which the structure
factor S, depends smoothly on wave vectpand on control IIl. BASIC EQUATIONS
parameters such as the temperatlirand densityp. The
equations of motion of the basic version of this theory, which A- A mode-coupling-theory model for a dense simple system

will be used in this paper, exhibit a bifurcation from ergodic  The basic quantity specifying the equilibrium structure of
liquid dynamics to nonergodic glass dynamic3 iér p cross  a simple system is the structure fac&=(|p4/?), which is
critical valuesT, or p., respectively. This bifurcation pro- the canonical average of the squared modulus of the density

vides a model for an ideal liquid-glass transition. In the €X-g,~tuations of wave vectod: o-=S. _expiar.)/N. Here
tended version of MCT, the singular transition is replaced by o0:Pg= = oEXP(ar.) N, “

regular crossovel23]. The crossover is connected with the labels theN particles at positions, in the system of density
evolution of structural relaxation. Extensive tests of the MCT?- TN€ structure factor of amorphous systems depends on the
predictions have been performed in recent years. Let us oniyave-vector modulug=|q| only and it is usually expressed
mention one group of such tests which are of particular relin terms of the direct correlation functios,:S;=1/(1
evance for the following discussions. The MCT results for—pPCq) [35]. The most relevant variables describing the dy-
the Debye-Waller factors, of the glass depend nontrivially namics of structure changes as a function of tim@e the
ongand onT or p. The results calculated for the hard-spheredensity correlatorg,(t) = <p§ (t)pg)/ Sy - The short-time as-
system[20] agree with the data measured for hard-spherg/mptote of these functions is specified by a characteristic
colloids [24]. Similarly, the fq calculated for a Lennard- frequency Qq:g(t)=1—3(Qqt)>+---. In the small-
Jones mixturg25] agree within 10% with the values de- wave-vector limit one gets the dispersion law for sound,
duced from molecular-dynamics studigs]. These assess- Qq=voq+0(q3), wherev, denotes the isothermal sound
ments of the theory and many other tests, which are reviewegbeed. For general wave vectors one obtﬂﬁs: v2q2/Sq,

in Ref.[27], show that MCT describes properly some essenwherev denotes the thermal velocity of the partic[&s]. In

tial features of structural relaxation. Since the MCT equaparticular,v2=v?/S,. Within the Zwanzig-Mori formalism
tions are rather mvolved, most of the original yvork was don€pne can derive the exact equation of motion

first for schematic models. These are truncations of the large

set of equations to sets dealing with a few correlators only. " ) 5 [t R

The truncations are done with the intention to reduce the ¢q(t)+9q¢q(t)+9qf0mq(t_t )¢q(t)dt’=0. (18
complexity of the mathematical machinery without losing

the essence of the features to be analyzed for the solution. It ) . ] .

was noticed for schematic models dealing with a single cord he relaxation kernein,(t) is a correlation function of fluc-
relator that the spectra for the states B&T, or p>p,  tuating fprces[35]. Let us mtrodl_Jce here and in the fpllc_)w-
exhibit a broad peak, which is due to a superposition ofnd Fourier-Laplace transformations to mép,mq and simi-
harmonic-oscillator spectrfi22,2§. Tao et al. recognized lar functions from the time domain onto the frequency
that the evolution of these peaks due to changes of contrélomain  according to  the  convention ¢q(w)
parameters was similar to what they had measured for the i /oexplwt)¢g(D)dit=gy(w)+igh(w). The reactive part
boson peak of glassy aqueous L[TH]. Therefore, they con- ¢4(w) and the dissipative part or the spectrufj(w) are
cluded that MCT implies a theory for the boson-peak specconnected via a Kramers-Kronig relation. Equatida) is
trum. This conclusion was corroborated by a series of studequivalent to the representatiof,(w)= —1/{w—Q§/[w



PRE 61 EVOLUTION OF VIBRATIONAL EXCITATIONS IN . .. 589

+Q§mq(w)]}. The fluctuation dissipation theorem connects
¢q(w) with the dynamical susceptibilityx,(w): xq(w)
=[wpg(w) +1]xq. Herexg=Sq/(puv?), with  denoting

the mass of the particles, is the isothermal compressibility
[35]. Therefore, Eq(1a) is equivalent to

1F

Xo( @) xq= — Q[ 0?— Qi+ Q2omy(w)]. (1) 0s |

Within the MCT kernelmg(t) is written as the sum of a
regular contribution and a mode-coupling contribution, de-
scribing the cage effect of dense systems within Kawasaki's
factorization approximation. In this paper we neglect the
regular term. Hence one g€i20] %

mMqy(t)=Fold(D)], (2a
a a FIG. 1. Debye-Waller factof, (crossepand one-tenth of the

where the mode-coupling functionaf,, considered as a Percus-Yevick static structure fact&; (lines) of a hard-sphere
functional of the dummy variable . is F [Nf] system(HSS at the packing fractiong=0.600(a), ¢=0.540(b),

N TRy . U S and the critical packing fractiop=0.516 (c). The inverse of the
=24 p=qV(a,kp)fif,. The coupling coefficienty(q,kp)  particle diameter, #, is chosen as a unit for the wave vectpr
are determined by the equilibrium structure:

el oy > N12 4 infinity so that the spectré, () andm(w) are continuous
V(a.kp)=pSSSpla- (keit pep) (207 (2b) in ». Density fluctuations,qwhich are created at titreO,
Let us approximate wave-vector integrals by Riemann sumglisappear for long times, and the same holds for the force
obtained by choosing an equally spaced wave-vector grid dfuctuations. The system approaches equilibrium for long
M terms. Thus the wave-vector indgwill be understood as times as expected for an ergodic liquid. This implies
a label running from 1 toVl. Correlatorsé(t), kernels, etc. lim,_o@my(w)=0 and one concludes from E¢lb) that
are considered al§l-component vectors. After this discreti- the static susceptibility}qzxq(wHO) agrees with the ther-

zation, the functional is a quadratic polynomial modynamic susceptibilityj(q=xg. For large coupling con-
M stants, on the other hand, there is arrest of density fluctua-
Fq_ T tions for long times: ¢ (t—x)="f,; 0<f,<1. Thus the
fl1= Vakpfkfp- 4 g q o
Fel 1] kél akpTkp 29 perturbed system does not return to the equilibrium state.

Similarly, there is arrest of the force fluctuationsi,(t
The positive coefficientsV,, are related trivially to —o)=C,>0. The numbersf,,C, are connected by the
V(q,kp) in Eq. (2b); for details the reader is referred to Ref. €quationg 20]
[36]. _ — =
Equations(1) and (2) are closed. They define a unique fa=Cq/(1+Cq),  Co=7[fl, a=12,...M. (3
solution for all parameter® ,>0,V, ,=0. The solution has

all the properties of a correlator, i.e., tig(t) are positive- ko this strong-coupling solution the kernel exhibits a zero-
definite fynctmns given by non-negative speoﬁ‘@(w).. And frequency pole, lim)_owmy(w)=—C,, and therefore one
the solutions depend smoothly 6l andV i, for all finite-  concludes from Eq.(1b) that the static susceptibility is
3\/”;;? d'gfnr;’glf’#%j%b;rgf' Eqs_,.(l) and (2) forr_nulate 4 smaller than the thermodynamic on§q< X;, since S(q
- ynamics. The model is related to_ ¢ . . .
=Xq/(1+Cq). This is a signature for a nonergodic state

the physics of liquids by specifyingq andVy i in terms of [39]. The system reacts more stiffly than expected for a ca-

particle interactions and the control parameiers. nonical averaging. The dynamical structure facgye)
In the following, the results will be demonstrated for the ,, ging. Yy . By
=Sypq(w) exhibits a strictly elastic peak:S;(w)

hard-sphere systertHSS. The structure factor is indepen- L .
b ysterthSS b =7S,f46(w)+ regular terms. This is the signature for a

dent of T in this case, so that the only nontrivial control — ¥ ~d'¢ el
parameter is the packing fractian of the spheres of diam- solid with fq_denotlng its Debye_-WaIIe_r factor. Hen_ce,_ t_he
strong coupling solution deals with a disordered solid; it is a

eterd: o= 7d%p/6. The structure facto, is evaluated in . ) .
the Percus-Yevick approximatid85]. Wave vectors will be model for an ideal glass state. If one increases the cquplmg
constants smoothly from small to large values, one finds a

considered up to a cutoff valug* =40/d and they are dis- ~. . S
cretized toM = 300 values. The sphere diameter will be cho-Singular change of the solution from the ergodic liquid to the
nonergodic glass state, i.e., an idealized liquid-glass transi-

sen as the unit of lengtlll=1, and the unit of time will be . : > »
gtid tion. For simple-liquid models the transition occurs upon

chosen such that the thermal velocityis 2.5. . o .
cooling at some critical temperatufe or upon compression
at some critical packing fractioa [20]. For the HSS model
under study one findg.~0.516[36]. If ¢ increases above
The specified model exhibits a fold bifurcatipp2]. For  ¢°, the Debye-Waller factof, increases above its value at
small coupling constantg ,, the correlatorsp,(t) and ker-  the critical point, called the plateafla, as is demonstrated in
nelsmy(t) decay sufficiently fast to zero for times tending to Fig. 1.

B. Ideal glass states
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In the theory of crystalline solids one defines susceptibili-As a result, equations of motion are produced, which are of
ties with respect to the restricted ensemble of a given arthe same form as the MCT equations discussed in Sec. Il A.
rested lattice. The MCT equations of motion allow for aBut in addition to the quadratic mode-coupling term, there
similar formulation of the equations of motion for the glassappears a linear one, and the values of the mode-coupling
state[22]. To see this, one has to map the density correlatorsoefficients from Eq.2b) are renormalized to the coeffi-

¢, to new onesp, by cientsVg p.-
A The preceding Eq45) are equivalent to equations relat-
D) =TFq+(1=1g) dqg(t). (48 ing the density-fluctuation spectr@(w) with the kernel

. - N ram (@) =m{Y (o) +mP" (w):
If one introduces new characteristic frequendigs by spectram(w) =mg* (@) +mg” ()

02=02%1-1,), (4b) rhg””(w):; V() (5d)

one obtains the short-time expansigg(t)=1—3(Qqt)%+ 1
- in analogy to what was found fap,(t). Substitution of m®’ (w)=="> f dwlf dw,Vy
these results into Eq1a) reproduces the MCT equations of a ™ kp P

motion with ¢, Q4, andm, replaced byg,, O, andm,
respectively. Here the new relaxation kernels are related to
the original ones by

X 80— w1~ 0,) p(w1) Py(w,). (50

One can interpret Eq$4) and(5) using the language of the
theory of boson fields, e.g., the phonon fields in crystals.

Xq(@)!Xq is the field propagator and,, is the bare-phonon-
For the dynamical susceptibility one obtains the formuladispersion law. The kernéhq(w) is the phonon self-energy.
Xq(w)=3(q[l+w§5q(w)]. The new correlator has a vanish- Equations(5d) and (5¢) areAgolden—ruIe expressions for the
ing long-time limit, (}q(t_mo):o; the Fourier-Laplace Phonon-decay rates. Kernﬂ!i(l) describes elastic scattering
transform exhibits the property ”mOw(%q(w):O' Since of the phonon from the disorder, produced by the amorphous

the equation of motion does not change its form, one gets a@ass structure. Kerneh>) deals with the decay of a phonon

the analog of Eq(1b) the expression of the susceptibility into two due to anharmo_nicities. The glass structure inflp-
Xo(®) in terms of the polarization operatﬁlq(w): ences the decay rates via the Debye-Waller factors which

enter Egs(5b) and(5¢) for Vg  andV,, 4, respectively. The

My(t)=Cq+ (14 Co)my(t). (49

Xo( @) xq=— Q[ 0? = Q5+ Qfomy(w)], challenge is to evaluate this probability(w) self-
consistently; the decay depends on the same phonons as one
Xq= X;(l— fg). (4d)  wants to study.
Combining Eq.(3) with Eq. (4c), one concludesAnq(t—m) C. The glass-transition scenario

=0, i.e, the new kemeiny(w) for the amorphous solid  Figyre 2 exhibits the evolution of the dynamics with an
exhibits a regular zero-frequency behavior: Jimyomg(w) increase of the packing fractiop. The wave vectorg
=0. =7.0, used in the lower panel, is close to the structure-
The mentioned equation of motion foff;q(t) can be factor-peak position where the static susceptibij‘iﬁ;xsq is
closed by combining Eq$4a) and (4c) with Eqgs.(2a) and  high, while the wave vectay= 3.4, used in the upper panel,
(20). One finds an expression of the new kernel as a newdeals with fluctuations wher)eg is very small(compare Fig.

mode-coupling functionaft of the new correlators: 1). Figure 3 shows the equivalent information for the fluc-
tuation spectrapy(w). In Ref.[40] a further set of diagrams
Mg(t) = Fol S(1)]. (58)  for the wave vectog=10.6 can be found.

The curves forp<¢. with labeln=1 in Figs. 2 and 3
Fis a sum of a linear term# ") and a quadratic one refer to the packing fractiop=0.276. The correlators ex-
j:(Z)j:q:jcgl)ij:gZ), where hibit strongly-damped oscillations, and the ideal phonon
resonances, to be expected fog=0, are altered to broad-
)% N ened bumps in the spectra. If the packing fraction increases
fé [f]:; Vo ific, into the interval 0.9.< ¢<¢., the oscillatory features al-
most disappear fot>0.2, and the shown spectr«ﬁ%(w)
~ decrease monotonously with increasing Simultaneously,
Var=2(1=f4) 2 Vgofp(1— i), (5b)  the decay to equilibrium is delayed to larger times. At the
P critical point the correlators approach the platdguin a
stretched manner, as shown by the curves with laelFig.
jrff)[”f]zz Vq,kakTp, 2. This process, which is called critical decay, leads to a
kp strong increase of the fluctuation spectra with decreasing fre-
A quency, as shown in Fig. 3. Increasipgabove the critical
Vakp= (1= f)Vqip(1=f)(1—1p). (50 packing fractiong., the values for the long-time limit§,
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FIG. 2. Density correlation functior®(t) of a HSS as a func- 16° i
tion of timet for the wave numberg=3.4 andg=7.0. The curves
refer to the packing fractiong=0.6 ande= ¢.(1+10""3) with n
given in the figure. Herep,~0.516 denotes the critical packing
fraction. The curves with labet are the solutions at the critical FIG. 3. Fluctuation spectré(w) of the correlation functions
point, which approach the long-time limit},=0.36 andfS,  shown in Fig. 2.

=0.85. The units of length and time have been chosen here and in . . .
all the following figures so that the hard-sphere diameter. and ~ P€ understood by asymptotic expansions about the critical
the thermal velocity =2.5. point[22], the dynamics is stretched over many decades. The

glassy dynamics of the HSS is discussed comprehensively in

increase. Since these limits are approached exponentially faBefs.[36,41]. It is impossible to view glassy dynamics ad-
for ¢#¢. [38], the correlation spectra become equately on linear scales fdror w. Conventionally, one
w-independent for low frequencies. The value for this white-represents the results on logarithmic abscissas as done in
noise spectrum increasesgfdecreases towards, ; thisisa  Figs. 2 and 3. The bifurcation far= ¢, or T=T, also modi-
precursor phenomenon of the glass melting at the transitiofies the transient dynamics. The subject of the paper is the
point. If ¢ is sufficiently far abovep,, one observes oscil- study of these modifications.
lations again, as can be seen for the0.6 result in the
upper panel of Fig. 2. In this case, the correlation spectra are Ill. EVOLUTION OF THE TRANSIENT DYNAMICS
no longer monotone functions of frequency. Fope3.4,
there occur two peaks fas>10. The narrow peak is due to
high-frequency phonon propagation. In addition, there is an For a discussion of the transient motion, it is sufficient to
anomalous-oscillation pealdOP) for w~80. Forq=7, a  consider dynamical windows of about two orders of magni-
phonon peak is absent in the spectrum §o+=0.6 but an tude. These can be viewed more adequately on linear rather
AOP is present, as is shown in the lower panel of Fig. 3. than on logarithmic abscissas. There is no reason to consider

The time scale for normal-state-liquid dynamics is set bysuch fine tuning of control parameters relative to the critical
the Debye frequencyp . It is the same scale as for the point, as is necessary for a study of structural relaxation.
dynamics of the crystalline state of matter. For the discussio herefore, let us extract the relevant information for the fol-
of this normal condensed-matter dynamics, it is sufficient tdowing discussion from Figs. 2 and 3 and replot it as Figs. 4
consider a window of, say, two decades around/@p . and 5. Let us first consider the results for wave veaor
This is demonstrated in Fig. 2 for the liquid state with label=7. For the packing fractiop=0.60, the particles are lo-
n=1 or for the glass state with labal=3. If the time in- calized in such tight cages that the square raut
creases from 0.01 to 1, the correlatefg(t) decrease from = J(6r?(t—)) of the long-time limit of the mean-squared
0.9 to the long-time limit. All oscillations occur within this displacement is only 5.0% of the particle diamdtt]. Thus
interval, which is also called the transient regime. The specene expects the particles to bounce in their cages with an
tra for these states are located within a corresponding regimaverage frequency of the order~2wv/(46r)=78. This
of microscopic excitations, extending roughly between 0.3explains qualitatively the oscillation around the equilibrium
and 300. For frequencies around and below 0.3, there is onlyalue f; o exhibited by ¢, (t) in Fig. 4 for t<0.3 and the
white noise for the specified normal states. The glass transtorresponding “peak” of the spectrum in Fig. 5. The maxi-
tion is connected with a dynamics, called glassy dynamicsmum positionwp~ 75 of this AOP is estimated well by the
which occurs for times longer and frequencies smaller tharrude formula. The AOP differs qualitatively from the
the ones characterizing the transient. For reasons which cdrorentzian which one would expect for some damped har-

A. Anomalous-oscillation peaks and high-frequency phonons
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FIG. 5. Fluctuation spectr@g(w) of the correlators shown in

FIG. 4. Some of the correlators from Fig. 2 on a linear time axis.Fig 4

The full lines refer to glass statesi€ 3:¢=0.567; n=4:0.540)
with the arrows indicating the long-time limit,=lim,_o®4(t).  phonons in crystals. The softening of the glass with decreas-
The dashed lines with labet exhibit the critical decay ¢ |ng @ leads to a decrease of the phonon frequency, but F|g 5
=0.516) and the lowest dashed curves refer to the liquid state fojemonstrates that for alp=¢. the peak positions are lo-
n=4 (¢=0.492). cated considerably above the maximum positign of the

AOP discussed in the preceding paragraph. One recognizes
for the ¢=0.60 result in Fig. 4 that the oscillations for
=<0.1 do not occur around the long-time linfi§ 4. Rather,

the oscillation center follows a curve discussed above for the
bouncing in the cage. This is equivalent to the fact that the
wJphonon resonance does not exhaust the spectlpio),

monic oscillation. The low-frequency part of the peak de-
creases more steeply with decreasingo that there appears
some threshold neav=40. Below the threshold, the spec-
trum is flatter than expected for the wing of a Lorentzian. If
¢ decreases to 0.567, the cages widen so #at 0.070
41]. This explains the increase of the oscillation period e L
Eﬂbi]ted by cuEvenzC% in Fig. 4 and the correspondir?g down- rather it is pl_aced on top of some back_ground. The back-
ward shift of wp in Fig. 5. The shift is accompanied by a ground exh|b,|,ts a similar t_hreshold as dls_cussed above for
strong increase of the spectrum fers 10. The integral of 1€ AOP 0f¢7 {w), and with decreasing it also follows

the inelastic spectrum also increases, reflecting the decrealf Same pattern as described for ¢he7.0 spectra. Appar-

of the elastic contributionrf,, which is exhibited in Fig. 1. €ntly, the dynamics foq=3.4 illustrates a hybridization of
The described trends continue df is decreased further to the phonon dynamics with the modes building the AOP. The
0.540 (curvesn=4). The threshold and the spectral mini- 'égular dependence of the MCT solutions on control-
mum for small frequencies are now replaced by a centraP@rameter variations is the reason why the results in Figs. 4
peak foro=<20. The maximum of the AOP, estimated from and 5 do not exh!blt any drastic chqngamﬂs shifted from
5r=0.099[41] as wp~40, is buried under the tail of the (he glass state with labei=4, referring toe=(¢—¢c)/¢c
central peak; it merely shows up as a shoulder. The cor™ 0.0464, through the critical point to the liquid state with

relator still exhibits some small oscillation before it reachest = — 0-0464. But upon shifting the state into the liquid, the
its long-time limit f, ;=0.96 fort>0.2, but it does not fall phonon resonances get buried under the relaxation spectra.

below f,, anymore. At the critical poin®r = &r°=0.183 The vgriation of the spectra with changes of the wave

[41] and S0 one estimates a positiop~21. But the critical  VECIOr d is demonstrated in Fig. 6 for the stiff-glass state

decay manifests itself by the appearance of a long-time talVith the packing fractiorp=0.60. Forq=0.6, a single peak

of ¢, ((t). The approach to the asymptdte,=0.85 cannot of near/l/y Lorentzian shape exhau_s_ts the whole melgsuc spec-

be demonstrated on the linear time axis used in Fig. 4. ThifUm ¢q(w). The resonance pcﬁilon follows the dispersion

tail leads to a strong enhancement of the central peak, so thiW ©Of high-frequency sound)™=v..q. Here, v.. is the

the AOP cannot be identified. This trend continues if a packsound speed expected from the glass susceptilyility, EQ.

ing fraction below the critical value is considered. (4d), v,=vo/1—Tf,_o=75.8. Also the half-width of the
For the glass states, the correlaters,(t) exhibit weakly  resonance exhibits the quadratic wave-vector variation ex-

damped oscillations which lead to nearly Lorentzian resopected for sound in an elastic continuuﬂﬁa:yqz. The

nances for the spectra. These excitations are analogous $ingle-peak shape of the spectra is found for all wave vectors
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FIG. 6. Spectrabg(w) (solid lines of a HSS at packing fraction
¢=0.60 for some wave numberg The dashed lines show the
generalized-hydrodynamics approximation. Fqe=1.0 and q

=3.4, the dotted lines show the generalized-hydrodynamics ap-

proximation withf, replaced byf,_.

up to aboutgp/2, whereqp=(36m¢)Y*=4.08 denotes the
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FIG. 8. Width at half maximuml’, (diamond$ of the high-
frequency resonance of the spectrdxﬁ(w) of the HSS for a pack-
ing fraction ¢=0.60 as a function of the resonance-maximum po-
sition Qg’ax for various wave vectors. The straight line represents
the small-wave-vector asymptotel's=y(Qq*v..)*=K"(w
=0)(Qg‘a’§2, whereK"”(w=0)=0.001 82.

asymptotic lawl” ;= y(Qg“aX/vw)z, as is shown in Fig. 8. The
sound frequency)q'® reaches the position of the maximum
of AOP at g~1.2 and extends considerably beyond this
value for largerg, as is shown foq=1.8 in Fig. 6.

If QF* increases to the center of the AOP, the loffe-
Regel limit is approached; i.e., the sound frequency becomes
of the same order as the resonance width. In this case, hy-

Debye wave vector of the system. Also the linear dispersio®ridization of high-frequency sound with the modes forming
law continues up to these largevalues as is demonstrated the AOP becomes important. The sound resonance is not

in Fig. 7. However, forg=0.6 the resonance width, is

Lorentzian anymore, as demonstrated in Fig. 6. ¢rerl.4,

somewhat |arge|’ than expected by extrap0|ating théhe threshold of the AOP neas=40 causes a shoulder on

300 | | ‘7 ]
9=0.6

| ﬁ;m%%ﬁﬁﬂ%% |

100 E

L R I TR

FIG. 7. Frequencﬁqzvq/\/g (dashed ling renormalized fre-
quencyﬁqzﬂq/\/l—fq (full line), and position of the global
maximum Q4% of the spectrun{diamonds of a HSS at packing
fraction ¢=0.60 as a function of the wave numbegr For wave

numbers at which two separate maxima of the spectrum can b
identified, the frequency position of the peak with the lower inten-!

the low-frequency wing of the sound peak. With increasing
g, a broad flat background spectrum is formed between the
threshold and)¢'® as shown in Fig. 6 fog=1.8 and 2.2.
For wave vectors exceedimyg, /2, the spectrum exhibits two
maxima. The one at lower frequency is due to the AOP. The
peak at higher frequencies is the continuation of the high-
frequency sound resonance, which is increased because of a
level repulsion effect, as demonstrated in Fig. 6 dobe-
tween 2.2 and 5.4. The high-frequency-phonon frequency
Qg“axincreases withg increasing up to abouwfy, and then it
decreases again i increases up to about 5. So the
dispersion follows the pattern expected for a crystal phonon
near the Brillouin-zone boundary. The widkh of the high-
frequency phonon for 255q=<5.0 varies only weakly with
changes ofy. Also the AOP maximumwp does not change
very much ifq increases from 2 to 5, as is demonstrated by
the open circles in Fig. 7. In a large wave-vector interval
around the position of the first sharp diffraction peak of the
structure factoS;, the spectra do not exhibit a phonon peak
gut the AOP only. The spectral shape varies only weakly
with changes ofy, except neag=28.7; there a new splitting

sity is marked by the open circles. The vertical bars mark the freln tWo peaks occurs.

guency intervals wher® () exceeds half of the maximum inten-

q

In Fig. 9, the spectroscopic parametélg®* and T, of

sity of the spectrum. The arrows point to the positions of the Debydligh-frequency sound are presented as a function of the

wave numberp = (36m¢)Y°=4.08 and the Debye frequeney,

packing fraction. The resonance frequency decreases with

=v.0qp=309 corresponding to the high-frequency sound speedlecreasingp, reflecting the softening of the glass state upon

v,,=75.8. For q=3.4 (q=7.0), one getsQ3,=77.0 ;o

=13.7) and();,=167 (Q,,=92.3).

expansion. Remarkably, the dampilig does not vary much
with changes ofp.
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160 - . - - - The integral in Eq.(8d) is to be understood as a Riemann
140 | ] sum over the wave-vector grid &l terms as specified in
o o o © Sec. llA.
120 r © 1 The hydrodynamics description is not suited to deal with
100 | © il high-frequency sound and the AOP. In order to identify the
¢ essence of these phenomena, a generalized-hydrodynamics
80 1 S x 1 description(GHD) shall be developed. It is obtained from
60 x * . Eqg. (4d) via approximating the kerne‘nq(w) by its zero-
x wave-vector limit:
40 | 1
0 | ; Xa (@) xg=— 0 {0*= O 1-wK(w)]}.  (9)
0 056 : 058 : 08 This formula extends the hydrodynamics approximation in
’ '(p ’ two respects. First and most importantly, the hydrodynamic

damping constanii y/v2 is replaced by the frequency-
dependent functiorK(w)=K’(w)+iK"(w). Second, the
full nontrivial g dependence dﬁq is kept. According to Fig.

7, it is theq dependence (flq which dominates that of the
whole density-fluctuation spectra. If one intends to describe
these spectra for wave vectors up to the inverse of the inter-

particle distances, one must not simpliﬁ/q. However, if
one is merely interested in the description of high-frequency

- . . . sound so thag is restricted to the regime belogy/2, say,
The description of hydrodynamic sound is obtained by Iq A h gh WD_ I'y'
coarse-graining correlation functions so that fluctuations or?'}¢ can rep acélq in Eq. (9) by the hydrodynamics limit
microscopic scales for the space-and-time variations are ay2q =V=0- In this case, formul&9) has a form often used in
eraged out. Coarse graining is equivalent to restricting funccoustics, wher¢1—oK(w)] is called the dimensionless
tions Iikeﬂq or rﬁq(w) to their leading-order Taylor coeffi- longitudinal elastic modulus. Let us also rewrite the mode-

cient with respect to theiq and w dependence. In this coupling formula(7) for K(t) more transparently in analogy

manner one gets from E¢4d) the hydrodynamics descrip- to Egs.(5):
tion

FIG. 9. High-frequency sound-resonance positidf®* (dia-
monds and resonance width, (circles as a function of the pack-
ing fraction, determined foq=1.8. The crosses exhibit the maxi-
mum positionwp of the AOP of the density-fluctuation spectrum
for wave vectorg=7.0.

B. A generalized-hydrodynamics description
for the glass-state dynamics

K(t) =KD ) +K@(t), (103

H - H2;r 2 H2_: 1H
@) xe= -0 [w2- 02 +i0lM]. (63 o
g q a . g KO (t)= . Wb (t)dk,  WH=2(1—f,_)Vifi (1
Here the dispersion la and the dampingd’y are given
by —fu), (10b)

ngqu, vi=v§(1+C),

K®(t)= fowwa%k(tﬁdk, W= (1~ fq)Vi(1—f))2.
(100

In Fig. 6, representative MCT spectra for the glass states
of the HSS are compared with the results of the generalized-

Ta=v9%  y=viK"(0=0), (6b)

where the notatiorC=C,_, and K(t)=mg_o(t) is intro-

duced. Because of Eq&a), (3), and(4c), one can express
and K(t) in terms of the mode-coupling functionak,

C=Folf]l, KMO={FleMt)]-C}H(1+C). (7)

An explicit expression for the new functiond, follows
from Egs.(2a and(2b):

Folfl= f Vifidk, (8a)
0
where the weight factor®,=0 read
2| 2 2 ’ 1 N2
V= pSy=ol Sk/27] Ck+§(kck)ck+§(kck) :
(8b)

hydrodynamics approximation. For the regigwe 2, the de-
scription by Eq.(9) with ququ is very good. This not
only holds for the treatment of the high-frequency-sound
resonance, but also for the background spectrum. But the
generalized-hydrodynamics approximation yields reasonable
results also for wave vectors extending up to and exceeding
the value of the structure-factor-peak positigpa,~7. In
particular, the subtle hybridization of the phonon with the
modes underlying the AOP is treated semiquantitatively cor-
rectly. Hence, one concludes that E(®. and (10) separate

the problem of the evolution of the transient dynamics into
two parts. The first part concerns the dependence on the
wave vectors. This is determined entirely by the quantities
S(q andflq. These functions are constructed from the struc-
ture factorS,, whose dependence gnand ¢ is well under-
stood.S, determines the characteristic frequeiity and the
thermodynamic susceptibilitxg. The MCT equations pro-
vide the glass form factor,;, which are understood as well
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3 ' - =0). But let us consider a generalized-hydrodynamics ap-
proximation, defined by ignoring the wave-vector depen-
237 T dence of kernelny(w). Because of Eq(2a), this limit is
40 given by Fo[ ¢(t)] and thus it can be expressed Kyw) via
Eq. (7):
My-o(w)=[—Clw]+(1+C)K(w). (11

The kernelm,_(w) exhibits the pol¢ —C/w], which is the
signature of the ideal glass state; other subtleties of the
glassy dynamics are hidden (). Substitution of Eg.

oo | 1 (11) for my(w) in Eqg. (1b) reproduces Eq(9), except that
r ] the renormalized frequendf), is replaced by the approxi-
0012 ¢ 1 mation to Eq.(4b): Qq/\1—f4_o. For our model of the
K@) | 1 HSS structure, there are no serious wave-vector dependences

of fq for g=<qgp/2. This means that high-frequency sound
and the background spectrum fip=2 can also be discussed
on the basis of Eq.1b). The dotted lines in Fig. 6 exhibit the
corresponding results fa=1.0 and 3.4. However, Fig. 1
demonstrates that the relevant facter fl,=1/(1+C,) var-
ies by more than 100% fay approaching and exceeding .
Therefore, the generalized-hydrodynamics approximation
FIG. 10. Reactive parts of the moduli{w)=1—-wK’(w) and  based on Eq(11) cannot be used to discuss, for example,
spectraK”(w) of the HSS for the packing fractiong=0.600  ¢7 (w). The superiority of the generalized-hydrodynamics
(solid), ¢=0.567 (1=3, dasheyl andp=0.540 (=4, dotted. approximation based on E@td) rather than on Eq¢lb) and
R (11) results from the fact that Eq&) and(10) treat the glass
[20]. And the combination of this information yield3, and  structure as it comes out from E¢B), thus avoiding the
Xq Via Egs.(4b) and(4d). Consequently, the remaining issue additional smallg approximationC,~Cq_o.
of this paper is to provide the understanding of the kernel
K(w). C. The stiff-glass approximation
Flgufrehlo exg|ti|t;the iprtmé,‘") ar]:d alr?o the reactive In this section Egs(1) and (2) shall be considered for
F;;ir\tlzol‘:\sg g;teiuﬂg:)s_ed_&é(o w)(;or?a r%rulr:eseirr:e?er??ﬁ:r; large coupling coefficient¥,,. Let us write symbolically
those ?or the corrélators spince honon resonancez are abseV kp=O(1/7), so that various quantities can be classified
P Qg'cording to their power of the small parametgerFor the

This property is the essential result achieved by the ZwanZigf'unction C,, which enters Eq(3) for f,, one gets large
q q

Mori theory, and MCT preserves this property. The spectra o~ T e oy
of the kernels consist of some broad background and ajiues:Cq=0(1/n). Thus 1-fq=0(7). Stiff-glass states

- . o . are characterized by Debye-Waller factors close to unity, as
AOP. The AOP ofK"(w) has quite a similar form as dis- is demonstrated by curv@) in Fig. 1. Therefore, one con-

cussed in Sec. ”IA fpﬁ’?-(’(w)’ and also Its changes dug © cludes from Eqgs(5b), (5¢), (10b), and (100 that the renor-
.cha.nges Okp are S|.m|Iar. Formul§(9) describes the h.yb“‘?" malized coupling coefficients decrease towards zero in the
ization of two “oscillators.” One is a bare phonon with dis- limit 7—0:

persionﬂq and the other is represented by the AOP spec-

trum. The hybridization problem is analogous to the one \“/qk, w=0(7), Vq,kp,W(kz)=O(n2)- (12)
considered, for example, in the dynamical theory of light

propagation in dielectric media. The bare phonon correAfter eliminating the arrested glass structure as described in
sponds to the electromagnetic wave in vacuum andL 1/ Sec. Il B, the remaining MCT equatiorigd) and (5) deal
—wK(w)] is the analog of the dielectric function. In lowest with a weak-coupling situation if the system is in a deep
order one gets two resonances of the coupled system whogtass state. Figure 11 demonstrates how the coefficients
frequenciesﬂg"a" are obtained approximately as a solution ofW((ql'Z) decrease with increasing packing fraction. Let us in-

the equation Qg]ax/flq)ZZA(Q;nax) and the damping is esti- troduce for later use also the integrated coupling coefficients

mated byl"y=Q5K"(Q0™). Elementary discussion of these .
equations with the aid of Fig. 10, which is left to the reader, W1,2:f W(2dk. (13
explains qualitatively the findings reported in Figs. 6-9. 0
A digression might be useful concerning the different role i ,
played by the two equations for the susceptibili) and [0 the three packing fractions = 0.600 (0.567, 0.540
(4d). The crucial property of glassy dynamics is that kerneldealt with in Fig. 11, one finds/, = 0.39(0.53, 0.64 and
mqy() in Eq. (1b) depends strongly on frequenay In par- w, = 0.1A4(0.34, 0.78, re_spectlvely._ I_.et ll,IS recall frgm Sec.
ticular, this kernel has a large reactive parf(w). There- 1B that Vg and the derived quantities/(? ,w; specify the
fore, it makes no sense to try a hydrodynamics approximamteractions of densityAquctuations with the arrested amor-
tion for Eq. (1b), based onmy(w)~my(w=0)=im}(w  phous structure, whil&/q ., W> ,w, quantify two-mode-
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0.05 e e e L A A the total spectrunK”(w). The role played by the two con-
B | i tributions K and K3 is utterly different. The former
o0s | ———n=3 // Lo ‘\_ yields the AOP and the latter provides a background spec-
wo — =06 I'A" [ ! \ trum.
a i ;o0 o To explain the AOP, a stiff-glass approximation shall be
0.03 L P b analyzed which is indicated by superscrifi$. It is defined
f A ro / -~ by dropping the two-mode contribution nfmq(w) in Eq.
0.02 P {’ \ A ‘,‘ (/'  (4d). Substituting the result into the formulas{"(w)
) / /“:-‘ ;o /I fo i 1 =[x{P(w)/xq—1]/w, one gets
oot r 7 @, \_ _ D2 ; A 2m(1)
- ¢g'(0)=—1{o—Qi/[w+ivg+Qims’(o)]},
P (143
0 = —+
m{P(w)=FPL¢MD(w)]. (14D
N
0.01 | ,‘/ b In order to ease the discussion at the end of this section, a
wo i friction term proportional tav,=0 has been included in the
) i formulas. It is equivalent to complementim’(w) by a
. ! white-noise spectrum. Unless emphasized otherwise, one
0.005 E ;N ,‘ i may read the formulas witl,=0. Equationg14) define a
) ;o ; special model for the MCT and all general theorems quoted
/ ’/ ‘.\ , in Sec. Il A apply. If one would treat the mode-coupling
/ SN fo //\ coefficientsVq=0 in Eq.(5b) for the functional7") as free
/// ~ /\i\ //\ N\ /’//“\\'\ 1y parameters, Eq$14) could exhibit glass transitions. For the
00 *’/’2” y p /{; = " "/1'2\“/ " discussion of such bifurcations, thd by M matrix Cgy

FIG. 11. Mode-coupling coefficien#/") andW?) determining

={9F[fllot}(1-1)?% q,k=1,2,... M, which is called
the stability matrix, plays an essential role. Glass transitions
are characterized by the spectral raditisf matrix C to be

via Egs.(10) the scattering and decay contributions, respectively, tounity, and for all other states one ges<1 [22,3§. One
the kernelK of the HSS glass states. The curves with label3

and n=4 refer to the packing fractiong=0.567 and¢=0.540,
respectively. The insets show the coefficients der3 magnified

by a factor 100.

checks that the stability matrix of the complete theory as
defined by Eqgs(4) and (5) is the same as the one for the
stiff-glass approximation, defined by Eqd.4). Therefore,

Egs.(14) with the coefficients/, defined in Eq(5b) do not

exhibit glass-transition points anymore; in particul¢g.1)(t
decay processes. One concludes furthermore that in the limit-c0)=0. Let us note also that matri€ is equivalent to
7—0, the two-mode contributions to the kermal(w) get  matrix Vg = (1—f4)Cqi/(1—f,). Therefore, also the spec-
suppressed relative to the one-mode _contrlbu_tlons, in particyz| adius ofV is E. Hence the resolverg=(1—V) ! ex-
lar KM (t) =0(7), KE)(t)=0(»?). This explains the result
shown in Fig. 12: for tt]e packing fractiap=0.60, the one- The w=0 limit of Eqgs. (14) yields the linear equation
mode contributionrK®(w) provides the dominant part of 3 (Sqe— Vg MP(0=0) =1 5, Vq[OZ . For the relevant

caser,=0, one concludes that the zero-frequency spectrum

0.006 of the kernel vanishes. Therefore,

mgl)"( w—0)= waz,

(159

and this implies for the low-frequency behavior of the cor-
relator

0.004 -
K”(@)
0.002

L (0—0)=(m2)[ 8(w— QN+ 5w+ Q)]+ Ryw?.
(15b)

Hence, one finds Rayleigh’s law: the scattering probability

mgl)"(w) of low-frequency phonons from static density fluc-
FIG. 12. The spectrunk”(w) of the kernel for the HSS at a tuations varies proportional @7,

packing fractione=0.60 reproduced from Fig. 1@ull line). The Let us simplify the stiff-glass approximation by embed-

dashed and the dotted curves exhibit the one-mode contributiofling it into the generalized-hydrodynamics description. Ac-

K®W'(w) and the two-mode contributiok®"(w), respectively. ~ cording to Sec. IlI B, this amounts to approximatim’él)(w)

The full line with label R denotes the Rayleigh contribution by its q=0 value, denotek®(w). Similarly, one should

Row? (Ry=2.4x10 'Y magnified by a factor 0.6410". write for the so far not specified friction coefficient,
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=702. Let us denote the stiff-glass susceptibility resulting
from Eq. (1489 within the generalized-hydrodynamics ap- 0.006 - L .

proximation byxg®\(w) = x,[ ${"(w)w+1], so that

XqSGA(w)Z—)A(qQS/{wZ—Q§+ wﬂé[ir-ﬁ- KSCAw)]}. 0.004
(16) K'(0)

The problem is reduced to evaluating the kerKéf(w) -
from the equation

KSGA(w):—f dk WY 0
0

X[1/(w— 0w+ Qi+ KSCA w)11]. FIG. 13. The full line reproduces the spectritfy ») from Fig.
12. The dashed line exhibits the stiff-glass-approximation result
17 K" (w) from Egs.(20) with {§=120, w;=0.388,»=0. The dotted
Again, the general theorems of MCT apply. However, sincéinf f tf/]/e extension of this approximation by incorporating
the mode-coupling coefficients have been altered by substiz A°K® (0=0)~23. The dgtégafhed line shows the extension
tuting Vg, for Vg, the stability matrix has been changed. ith 1 replaced by the kerndb K®(w) from Eq. (21).
Therefore, it cannot be excluded that the spectral raius )
reaches unity for the simplified theory. This would be anThe coupling constan, takes over the role of the spectral
artifact Of the genera'ized_hydrodynamics approximation andadius of the Stablllty matrix. In order avoid artifacts of the
Egs.(16) and(17) must not be used in such a case. various approximations leading to the resu§), the for-
The generalized-hydrodynamics approximation simplifiegnulas can be applied only fow,<1. Figure 13 demon-
Eq. (159 by the replacement R, by its g=0 limit to be  Strates that Eq420) with »=0 describe the AOP dk"(«w)
denoted byR,:KS%*(w—0)=R,w?. The coefficientR, is for the HSS with¢=0.60 reasonably well. Or~1e could im-
obtained by substituting Eq15b) into Eq. (10b). Using Eq.  Prove the description by trying better choices €y but this
(8b), one gets would not lead to any new insight.
Figure 11 shows that also for the evaluation of the integral
Ro=p(Sy/v..)3c5fo(1—fo)2[8m(1—w,)]. (18  in Eq. (100, the contributions fok<gp can be ignored. A
leading estimation for the two-mode kernel can thus be ob-
The Rayleigh spectrum is included in Fig. 12. A huge mag+tained aK (?)(t) =w,(t)2. Using Eq.(19b) one gets, there-
nification was necessary to make this contribution visible orfore,
the scale oK"(w).
One infers from Fig. 7 that fog>2 the variations of the
renormalized frequencg), with changes of the wave vector K@(w)= (1/77)(W2/W§)J K(o—o")K"(0")do'".
q are suppressed relative to those(®f. One can get an (22)
estimation of thek>qp contribution to the integrall7) by
replacing{}, by some averaged valu@. Figure 7 suggests The zero-frequency limit leads to a trivial integral with the
(1=120 forp=0.60. Introducing= 0? and indicating the  regy|tk (2" (w=0)= 7= (w,/\W;)8/(37{}). Going back to
results of the specified estimation by a tilde, Eif) is  Eq. (109, one concludes that the background term due to
equivalent to K(2)(t) could have been taken into account in its white-noise
approximation. This leads to the extension of the equation of
motion by adding a friction terne=)?7. Such an extension
(199 is obtained by including this term in the formulas, as was

done already in Eq(14a and the following formulas. The

According to Fig. 11, th&<qp contribution.s to the_integral dotted line in Fig. 13 demonstrates that thereby all qualita-
in Eq. (17) can be neglected, and thus this equation for theLive features ofK”(w) are understood. A further improve-

kernel simplifies to ment is obtained by dropping the white-noise approximation
for the correction ternK(®. This is done by replacing
+iv by w+K®@(w) in Eq. (20b). Figure 13 demonstrates
that thereby a more satisfactory treatmentkdf{w) is ob-
tained.
7 _ 2 The periodic continued fraction fab(w), which is de-
K(w)=lw,w-~2) fined byqus.(19), can be related to ?Igill)aert-Stieltjes inte-
+z(w)2 = 0 Vz(0) = w2 ]I(2w), (208  gral: [1dxy1—x?%/(x—{)=m(—{+{—1J{+1). Thus
one can express the normalized susceptibilifw)
Z(w)P=w(w+iv)/0? w.=1xJw;. (200 =[wd(w)+1]in the form

baoq (©)~d(w)=—1{o—D[w+iv+DK()]}.

KSCA w)~K(w)=W,d(w). (19b)

The solution of Eqs(19) for K and ¢ reads
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2 0.6
X(w)=f , d&p(&)x(w), (229
p(O=\(0] —H(é-wd)I(2mwy), (22D T
_ _ (W)
Xe(w)= -0 0?—0%¢+iwv]. (220
0.2
For the stiff-glass states, the AOP is obtained as a superpo-
sition of undamped-harmonic-oscillator spectra. The weight
distributionp(&) for the oscillators with frequency£Q) ex- 0

tends fromQ_=w_Q to Q. =w, Q. If the approximate
description is extended so that two-mode interactions are in- _
corporated as the white-noise-background spectrum for the FIG. 14. Fluctuation spectr&”(w) for the one-component
fluctuating-force kernels, the results remain valid, but theschematic model defined in Sec. IV A for a mode-coupling func-
oscillator dynamics has to include a Newtonian friction term,tional FIf]=v,f+v,f* (solid lineg andQ=nl. The states refer to
quantified by»=0. A better description of the spectra for (e glass with distance parameters-1/4", n=0,1,2 (compare
frequencies large compared €_ is obtained by acknowl- text). The dashed line exhibits the stiff-glass approximation given
edging that the friction forces do not exhibit a white-noise™ EAS-(20 with »=0. The dotted lines show the extended de-
spectrum. This can be done by replacingin Eq. (220 b scription including av#0, which was evaluated from the=0

P 0 y replacingin £q. (220 bY - jigit of Eq. (20).
the kernelK(®(w) from Eq. (21). The glass instability for
T—T, or op— ¢, is connected with the approach of; to

unity, i.e., with the threshold) _ approaching zero. p(t)=f+(1-H)p(t), 0Q*=0%(1-f). (25
IV. SCHEMATIC-MODEL DISCUSSIONS With K(t)=m(t), one arrives at the pair of equatiofiko).
A. Models for anomalous-oscillation peaks Let us consider as an example the model specified by the

, ) i functional F[ f]=v,f+v,f2. It was introduced as the sim-
The S|mplest.MCT models deal .Wlth. a single corrglator,plest one which can reproduce all possible anomalous expo-
say ¢(t). Equation(1a) remains valid with the subscrigt  nents of the general MCT22,28. Liquid-glass transitions
dropped. Generalizing Eq2a), the kerneim(t) is written as ¢cyr on a line in the;-v, parameter plane. The line, where
a mode-coupling function, specified by a series with coeffipe long-time limitf jumps from zero tf=1—\>0, is a
cientsv,=0: piece of a parabola with the representatioff=(2\
% —1)/A%, v§=1/A%, 0.5<\<1. In Ref. [42], diagrams
m(t)=F ¢(t)]= 2 V()" (23 analogous to Figs. 2 and 3_ can be found, which exhibjt_the
n=1 evolution of glassy dynamics and the AOP upon shifting
. o ] (vq,vy) from the weak-coupling regime to the strong-
The fl;)nlg-tlmefz I'T:"t fh_ ¢|(t_’m) obeys Eq. (3): f . coupling one. As a path in the parameter plane, a straight line
=Ff]/( +.;E[ ]?. ort e.g ass states one can carry outthg, .o -hosen: VisVifl+e), A=07, e==1/4" n
transformatlen discussed in Sec. Il B to get correlad(s)  —g 1 ... . Thefull lines in Fig. 14 reproduce three glass-
and kernelsn(t) with vanishing long-time limits. Equations state results. They are similar to what is demonstrated for the
(4) and (5a) remain valid with the subscrig dropped. The HSS in the lower panel of Fig. 5. The reason was explained
new functionalF is again a power series. For the renormal-in Sec. IlIC: these HSS spectra are described by the stiff-
ized Taylor coefficients, one gets, in analogy to ) and ~ glass approximation and this approach yields the same for-
(50), \'}n:(l_f)n+l[&nﬂf]/&fn]/n!’ n=12,.... The mulas(l9) as 'deri'ved above for the schematic model. The
limit of a stiff glass is obtained if at least one of the coeffi- Qashed lines in F|g. 14 represent the Ieadln.g-order descrip-
cientsv, becomes large. The numbgr=1—f can be used tion by Eqgs.(19) with v=0 andw,,{) determined by Egs.
as small parameter for the classification of terms. One find§24) and (25). The dotted lines incorporate=)2K®" (w
vh=0(7"). Let us change the notation W, ,=Vv,,so that ~=0) evaluated from Eq21). The results for the=4 spec-
tra show that the extended stiff-glass approximation can de-
5 ” 1 scribe the dynamics reasonably well for states which differ
wy=(1-f) nzl nv,f"s, from the instability point by only 6.25%. It was pointed out
[42] that the schematic-model solutions in Fig. 14 fit quali-
1 o tatively to the boson-peak scenario as reported for neutron-
Wo==(1-)3> n(n—1)v,f 2 (24)  scattering data. It was shovﬂni_’,] that the AOP of the speci-
2 n=2 fied model can be used to fit the boson-peak spectrum of

orthoterphenyl as it was measurell] by Raman scatterin
The stiff-glass approximation can be defined as in Sec. Il CatT:24p5 KZT — 45 K for frequen]cieys between 100 Gng
~ Cc
by approximating the kernel by the leading tenm(t) and 700 GHz.

=w1<}'>(t). Let us change the notation th=¢ andQ =0, Usually, a one-component schematic model is too restric-
so that tive to deal quantitatively with experimental data. But one
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0.2

can construct more elaborate schematic models with the in- 08
tention to mimic more features of the MCT. The perspective

of such an approach shall be indicated by results for the —
model used recently for the interpretation of scattering spec-
tra of glassy liquid§29,31-34. The model extends that of @@ .
the preceding paragraph by introducing a second correlator, | 06 los
to be denoted byp*(t). The equation of motion has the / o1
standard form of Eq(1a) with Q, ¢4, andm, replaced by ] /
O3, ¢%, andm?®, respectively. The mode-coupling functional 02t j / 1 00s
for m® is characterized by a single coupling constag0: I —

m(t) =vsd(t) (). (26) ths : 2 3 s 50

The model was introduced for the description of tagged-

particle motion in liquidg45]. FIG. 15. Spectrab® (w) of the solutions for the second cor-
The long-time limitfS= ¢°(t— ) is obtained from Eq. relator of the two-component model defined in Sec. IV A with

(3) as fs=1—-1/(fvg). The transformation to a new cor- chosen so that>=0.9. The first correlator needed as an input for

relator and a new kernel with vanishing long-time limits canthe memory kerne(26) is the one corresponding to tine=0 curve

be done as explained in Sec. Il EﬁSZ:Qszl(l— fS): in Fig. 14. The dashed lines are the stiff-glass approximations, Egs.

~ 28), to these curves. The arrows indicate which axis corresponds to
d5(t) =[ #3(t) — 51/(1—£5). From Eg.(4c) one gets Ehe)curves. P

me(t)=KP 1) +KP(t), (279 _
nance of the second correlator is located so far below the

KO(t) = udb(t) +weds(t), K1) =v.b(t) $5(1), ASP of the fi.rst. correlator .that there appears an AOP of
(270 ¢° (w) quite similar to that discussed for the one-component
model. In this casep(w) in Eq. (30) only produces a renor-
u=(1-HFf, we=(1—15), ve=(1—F9(1—f)/f. malization of the frequencie§)®J/¢ and a strongly sup-
(270 pressed background. F6r°=(), the resonances sz are
. o shifted upward because of level repulsion and the hybridiza-
The stiff-glass approximation for the two-componenttion yields a broad background extending from the threshold
model requires (+f) and (1-f°) to be small so that of the AOP of the first correlator to the AOP position of the
KE(t) can be neglected compargdKél)(t). Let us denote o000 one. FaRS=0.6(), the spectrumy® (o) exhibits an
the results by a tilde. The equations of motion, which speaop whose low-frequency threshold and maximum position
cialize Eqs.(14), read are close to those for the AOP @f'(w). The hybridization
causes a suppression of the high-frequency spectrum. There-
fore, the AOP ing® (w) is more asymmetrical than the peak
in ¢"(w). The hybridization results have similarities to those
~ ~ ~ o~ discussed in connection with Fig. 6. Indeed, it was explained
KS(w0)=wd*(0), ¢(@)=0%ud(w). (28D j"gec |iiC that the phonon modes are influenced by the
large-wave-vector modes which built the AOP, but that there
is no feedback of the phonons for wave veajerqp on the
AOP. This is the same situation as treated by the specified
schematic two-component model.

d(w)=—1{w— Q%[0+ ¢(w)+ Q2K w)]},
(283

This result is equivalent to Eq§19) except that the friction
constanti v is generalized to a friction functiop(w). The

solution can therefore be written in the form of EQOa

with z(w)? and w . replaced, respectively, by

w)?=0lo+e(0)]/0%2, wi=1*=|w, (29 B. Random-oscillator models

In particular, Eqs(22) hold with the appropriate change in T get more insight into Eq$22), the following problem
the notation. The Susceptib”ity is a Superposition withshall be considered: evaluate the averaged dynamical suscep-
tibility x(w) of an ensemble of independent harmonic oscil-
lators. The oscillators are specified by their masand by
their frequencie€)(£)>0. The latter depend on a random
variable ¢. Its distribution shall be denoted y(&); p(é)
This is a harmonic-oscillator susceptibility where the inter-=0. [ p(§)d¢=1. Itis no restriction of generality to assume
action with the background is included via a friction function ©(£)?=a+ B¢, B>0; buté has to be restricted from below
¢(w), dealing with the AOP of the surroundings. to insure stability. Let us choose as a minimum the
Figure 15 shows solutions for three characteristic choice¥alue —1. Thus one can writ€)(£)2= Q3 1+w+2\wé],
of Q5. The results refer to the stiff glass state discussed i$0 that(Q,>0 defines the frequency scale amdO<=w<1
Fig. 14 for the labeh=0. The couplingv®=10/f was cho- characterizes the minimum frequendy =Qy(1— Jw).
sen so that +f5=0.10. The stiff-glass approximation re- Denoting averages by bam&(¢) = [A(&)p(€)dé, the quan-
sults are shown as dashed lines. Ebt=0.1%), the reso- tity of interest is

weight p%(&) of the functions

Xg(0)=—0%[0’~ 0%+ 0p(0)]. (30
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Y(0)=— pl[0?—Q(&)?]. (31  Wwritten as noted in Eq422). Thus, the presented MCT de-
livers an approximation for the oscillator susceptibi(81)
Let us define a characteristic frequen€y>0 by 2 in the sense that the general distributipt¢) is approxi-
=0(&) 2. It specifies the static susceptibiliy=x/Q2. If ~ mated by p(&)=2V1—¢&4m. If p(&)=2V1-&n is
brackets denote canonical averaging, defined with respect hosen, one can check th&t=Q, and w=w;. In this
the oscillator HamiltonianH ;=[(P?/u)+uQ(£)°Q?]/2,  case MCT reproduces the exact result. Let us add that
one gets for the fluctuations of the moment(R?)=u°v>  the naive factorization for the kernel,(F(t)|F)
and of the displacemerQ?) =v?/Q (€)%, wherev denotes  — ,2(Q(t)|Q)[ 22— Q(£)2]2, would not reproduce the exact

the thermal velocity. The time evolution of some variableregylt for the specified example; rather one would obtain Eq.
A=A(Q,P) can be written as usual in terms of a Liouvillian (34) with an overestimated/, =w+w?2.

L:A(t)=exp(Lt)A, where iLA=(dAI0Q)P/
—(9AI9P) nQ3(€)Q.
To embed the problem into the standard framework of V. CONCLUSIONS

correlation-function theory, a scalar product shall be intro- . . N

duced in the space of variabled,B, ... by (A|B) Within mode-coupling theoryMCT), a critical tempera-

—(A*B). The vectordQ) and|P) are orthogonal and the ture T, and a corresponding critical packing fractippwere

normalization reads@|Q) =vQZ, (P|P)= 22 The Li- introduced as the equilibrium-thermodynamics parameters

ouvillian is Hermitian. The displacement correlator shall becharacterizing the evolution of glassy dynamics. For silica,

defined by for example, T, is near 3300 K[47], and therefore all ex-

periments quoted for this system in Sec. | deal Wit T

»(1)=(Q(1)|Q/(Q|Q). (32)  states. In this paper, primarily states are studied wiiéseso

far belowT. and¢ so far abovep, that structural-relaxation
Its Fourier-Laplace transform can be written as a Liouvillian-phenomena do not dominate the dynamics within the win-
resolvent matrix element: #(0)=(QI[£L  dow of interest. These states are referred to as stiff-glass
—~ ] YQ)/(Q|Q). This quantity can now be represented states. The dynamical window considered is the one of
within the Zwanzig-Mori formalism as a double fraction normal-condensed-matter physics, i.e., spectra are discussed
[35]: ¢(w)=—1{w—0%[w+0’m(w)]}. The memory within a two-decade regime for the frequeneyaround and
kernel m(w) is the Fourier-Laplace transform of the pelow the Debye frequenayy . For the stiff-glass states, the
fluctuating-force correlator spectra of thex-relaxation process are located at frequencies
_ 22 2 smaller than wp/100 and therefore it does not matter
m(t)=(F(O[F)/(v2Q*u%). (333 whether or not the quasielastic peaks of the spectra are
: At .02 _ treated as elastic ones. Hence it is legitimate to use the basic
Here_F 's the projection (.)f the force,P=—n0%(£)Q per version of the MCT which treats the crossover néaras a
pendicular toQ) and|P): ” . L
sharp transition to an ideal glassTat. The derivation of the
F=u[Q2-02%&]0. (33  MCT formulas, in particular that of Eq2b) for the mode-
coupling coefficients, is based on canonical-averaging prop-
The time evolution in Eq(333a is generated by the reduced erties. For temperatures below the calorimetric glass-
Liouvillian L£',F(t)=exp(L't)F, where L'=PLP and’P  transition temperaturél,, the system is in a quenched
denotes the projector perpendiculaj@) and|P). The sus- nonequilibrium state. From a rigorous point of view the ap-
ceptibility is connected with the correlator as usual,plication of MCT is therefore restricted to the reginie

(@) xy=[od(w)+1], >T4. However, experiments on high-frequency sound and
on the boson peak do not indicate anomaliesTforearT .
x(®)=—ul[w?— Q%+ wQ’m(w)]. (330  Thus it seems plausible that the results of the present paper
) _ ) _ can be used also for an interpretationTof T, data.
This exact representation g{w) in terms of kernem(w) is A major finding of this paper is that there are “peaks” of
the analog of Eq(4d). the density-fluctuation spectra for wave vectqrexceeding

The essential point in the MCT is the approximation of gpout half of the Debye vectay, , which are quite different
the kernelm(t) as a mode-coupling functional. The proce- from what one would expect for phonon resonances in lig-
dure[46] consists of two steps. First, one redu¢eso the  yids or crystals. These peaks, which we refer to as the
projection on the simplest modes contributing, and these argnomalous-oscillation peak&OP), show the properties of
the pair modes|Q¢):F(t)—|Q(t)€)(QEQ¢) " H(QEF).  the so-called boson peak listed in Sec. I. First, as shown in
Second, one factorizes averages of products into products q:f|g. 7, the positionwp of the peak maximum is several times
averages(Q(t) ¢|Qé&)— (Q(t)|Q)&2. As a result, one finds  smaller thanwp, . In this sense the AOP is due to soft modes.
. Second, according to Eq&22), the AOP is a superposition

m(t)=wyo(t), w;=¢&[[Q%Q%&)]-1}2/¢%. (34  of harmonic-oscillator spectra, where different oscillators are
specified by different frequencies. This can be shown since
These formulas are the analog of E¢8) and (5). They  there is a well-defined strong-coupling limit of the MCT
allow the approximate evaluation gf(w) from the given  equations, referred to as the stiff-glass limit, where the equa-
input informationQ* andw;. tions of motion simplify so much that all features of the AOP

Equations(33¢) and(34) are equivalent to Eqg19) with  can be worked out by analytical calculatiof@ec. 111 Q). In

0=0=0, and therefore the approximation fpfw) can be this limit the continuous spectra are purely inhomogeneous
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ones. Third, there is a lower cutoft _ of the frequency equations of motion for the density fluctuations of this struc-
distribution. This causes the low-frequency wing of the AOPture are obtainedSec. Il B). Such unified treatment of the

to decrease more steeply with decreasintpan expected for glass structure and its dynamics should be a feature of every
a Lorentzian. The high-frequency wing extends further outmicroscopic theory since it is the same array of particles
than the low-frequency one so that the AOP is skewedwhich forms the frozen structure and which carries the fluc-
Fourth, as the packing fraction decreases also the frequenciéi#ations. This unified treatment is especially important if one
wp anin decrease1 and Simu'taneous'y the intensity Of théntends to Study the dynamiCS near the InStablllty limit of the
spectrum increases. This is shown in the lower panel of FigStructure. The equations of motion describe the decay of
5 and in Fig. 10. The critical point is characterized by thefluctuations into pairs and also the scattering of fluctuations

threshold _ approaching zero. In this sense one concludedrom the arrested structure. For the stiff-glass states one finds
that the evBIution of the AOP is related to the dynamicalthe latter processes to overwhelm the former, as discussed in

instability predicted by MCT foko=, or T=T,. In order connection with Eq(12). In the stiff-glass limit, one finds

to understand a further property of the AOP, one has to aCt_hat the particles are localized in their cages and harmonic

knowledge that the leading correction to the stiff-glass re_oscillations of the particles with their cages are a good de-
'€dg 1ing . ur-g scription of the relevant modes. In this extreme limit the total
sults introduces a damping for the oscillators. It is due to th

decay of an oscillator mode into two modes caused by anegusceptlblllty is that of a distribution of independent-

harmonicities. A simplified treatment of this phenomenonoscmator responses, where the distribution of oscillator fre-

only leads to a modification of the formulas by the introduc-quences 's caused by the distribution of sizes and shapes of

tion of a friction constant in Eq. (220). Thus the peak is the cages. MCT provides an approximation of the distribu-

) on of the frequency squares, E@2b), and characterizes
superimposed on a flat background and the sharp threshol e drift of theqdistrizut%n with cﬁzanées of control param-
are changed to some smooth but rapid crossover. Not muc

) e D S ers. It provides also results for the corrections to this lim-
IS mOd'f'e.d in the penter of th_e AOP. spectrym prowder;t iting result, namely the appearance of homogeneous line
not too big. But with decreasing or increasingT, the ratio

. ) broadening due to mode decay and coupling of the oscilla-
v/ _ becomes much larger than unity so that the oscnlator%ons leading to weak wave-vector dependences of the AOP
of low frequency get overdamped. As a result, one obtain

- . ?)arameters.
the explanation of the fifth property, namely a central relax- One achievement of MCT is the possibility to explain

ation peak is formed if ¢ — ¢c)/ ¢ is about 0.1. In this case homogeneous line-broadening effects via a golden-rule
the AOP merely appears as a shoglder of the q“as'elas%echanism as is suggested by E&s) and(5e). This aspect
spectrum as shown by tie=4 curve in the lower panel of 5 sed above in connection with the evaluation of the
Flg. 5. Shifting the parameters even cl_oser to the 'ns_tab'“t)/oscillator dampingy due to two-mode decay and also in
point, the AOP gets buried under the wing of the q“as'elaSt'%onnection with the derivation of Rayleigh's law, E453).

peak. The elementary formuld$9) and (20) describe this 1, ever, the interpretation of Eq&d) and(5e) in the spirit
feature of the MCT solutions reasonably well fer ap- ot 5 golden rule is quite misleading, if the transition prob-

roachin up to about 5%. The cited results are quite _, ...~ . .
general gr(fé a?e obtained e\(;en for the simplest schgmatﬁb'“t'esv are so large that the self-consistent solutions are
qualitatively different from the ones obtained by a lowest-

MCT models, as is demonstrated in Fig. 14. Sixth, in a fur- rder aporoximation. In such cases. the formulas can lead to
ther refinement of the description one acknowledges that th@ pproximation. u oo u o
n approximation theory for an inhomogeneous “linewidth

glass compressibility has a wave-vector dependence. Thp enomenon. It was shown explicitly in Sec. IV B that MCT

enters in the form of a characteristic frequeriey, which rovides an approximation approach towards this phenom-
can be considered as a bare phonon dispersion of the amQyon and there is an example for which MCT reproduces the
phous solid. It exhibits a maximum fay neardp and & gxact result for the inhomogeneous spectrum. The MCT for
minimum near the structure-factor-peak positipp,, which e AOP is based on the fact that this theory can handle
in turn is near 2|p . This{)4-versusg curve is similar to the  homogeneous and inhomogeneous spectra within the same
one for the characteristic frequen€l, of the liquid which  framework.
plays an essential role in the MCT equatidis) and (1b). A side remark might be helpful. According to MCT, all
However, the oscillations of the Debye-Waller factor, shownstructural relaxation features are independent of the details of
in Fig. 1, imply via the renormalization formuldb) that the  the microscopic equations of moti¢a3,40. Therefore, the
ratio of the maximum to the minimum frequency is much existence of an AOP is of no relevance for understanding
smaller forf)q than for{),. This can be inferred in detail by glassy dynamics or the glass transition. But the AOP pro-
comparing the full line in Fig. 7 with the dashed one. There-vides an interesting piece of information on the arrested glass
fore, the maximum position of the AOP is only weakly structure. The AOP is the result of a mapping of the cage
g-dependent. Summarizing, we suggest that the MCT of thdistribution on the frequency axis. The mapping is done from
AOP provides the basis of a first-principle explanation of thethe configuration space on the time axis via Newton's equa-
so-called boson peak. tions of motion and canonical averaging followed by a
The formulated theory for the AOP has a transparent infourier-cosine transform to get a spectrum.
terpretation. MCT explains in the first place the formation of ~The arrest of density fluctuations at the ideal liquid-glass
an effectively arrested density distribution. This amorphougransition is driven by the ones with a wave numbenear
structure is characterized by the same quantity used to chafifie structure-factor-peak positi@p,,,~2qp, since for these
acterize crystalline structures, viz., by the Debye-Waller facwave numbers the liquid compres:sibil'mgocsq is large. The
tor fq. Within the same formalism which leads fq, the  compressibility of simple dense liquids far<qp is very



602 W. GOTZE AND M. R. MAYR PRE 61

small and therefore excitations with wave vectors from this 6
domain, which corresponds to the first Brillouin zone of the

crystalline phase, are not important for the evolution of

structural relaxation and the glass transition. For the same g
reason one concludes that scattering processes of density
fluctuations withq<<qp are irrelevant for the formation of

the AOP, as is demonstrated in Fig. 11. The soft complexes
which cause the AOP are constructed from fluctuations with
wave numbers near and abogg,,. These conclusions are
based on the MCT results for the Debye-Waller factiyys

In order to produce the spectral peak in Fig. 12has to be

that large as shown by the uppermost curve in Fig. 1. This

curve corresponds te=(¢—¢c)/¢.=0.16. In Fig. 3 of FIG. 16. Rescaled tagged-particle-density-fluctuation spectra
Ref. [48], a measurement df, for a hard-sphere colloid IS 109¢'(w)/g? of the HSS for the packing fractiop=0.600 at
documented for 8:qd<13 ande=0.11. Since these experi- wave numbersj=3.4 (solid), q=7.0 (dashedi andq=10.6 (dot-
mental findings are close to the cur@ in Fig. 1, we argue ted).

that the MCT results on the glass structure are in reasonable

accord with the experimental facts. Let us emphasize that th
above reasoning refers tp densely packed systems of Sphegults [49] and with molecular-dynamics-simulation results
cal particles. Obviously, in more complicated systems, SUCti’or ZnCl, [16] and silica[50]

as silica, the cages are not so tight as in a HSS. Therefore, 2 :
one can expect the soft configurations to be more subtle than ..

discussed in this paper. The results in Sec. IV A for the two-¥ (t)=(r (t)r)/(3v®). For a harmonic system, its spectrum
component schematic model indicate that the AOP can b@etermines the density of statgéw) =2¥"(w)/m, normal-
more structured than obtained for the HSS. For systems witfzed by [§g(w)dw=1. The velocity correlator can be ex-
a low coordination number, one can also expectracted from¢3 [35]. If one introduces the kerneh(©)(t)
intermediate-range-order effects to play an important role=lim,_oq’mg(t), one gets¥(w)=—1/[w+v?m(w)].
They enter, e.g., the coupling vertices in Eg@b) via the  The localization length?, defined via the long-time limit of
prepeaks ofS, [16]. Whether MCT can handle the micro- the mean-squared displacemdidr2(t—w))=6r2, deter-
scopic features leading to the AOP in complicated systemg,ines the smalty asymptote of  and the pole of the kernel

such as ZnClis unclear at present. In particular, it is unclear in the glass:fgz 1-(qro?+0(qY), mO(w)=— 1/(0)@

whether MCT can contribute to understanding why the b0'+ O(w?). One finds that the density of states vanishes pro-
son peak is more pronounced in strong glass formers such

silica than in fragile glass formers such as orthoterphenyl. %%rtional tow?” for small frequencies as expected for an elas-

The preceding interpretation of the AOP suggests that' cc‘)lntlnt;um 9(_“’)290“’2+Q(_‘”4)’ go=m” (e
these peaks appear in the spectra of all probing variables 0)(2rs/mv*) [22]. Figure 17 exhibits a result for the HSS.
coupling to density fluctuations of short wavelength. But dif- The ” law is obtained only for frequencies below the
ferent probing variables will weight the oscillating com- threshold()_ of the AOP. For larger frequencies the density
plexes differently and therefore the shape of the AOP and thef states is enhanced relative to the asymptotic law. The
positionwp of the peak maximum will depend somewhat on enhancement reaches a maximum of a factor of about 5 near
the probe. Let us consider two examples. The first one deal§ie position of the AOP maximum, and it is about a factor 3

with the taggigd particle correlattmﬁ(t)=<p3(t)p§*). Here At the maximum ofj(w). For larger frequencieg(w) gets
pz-(t)=exp(iqr(t)) denotes the density fluctuation of a
marked particle with position vectof(t). The spectrum

¢>§"(w) determines the incoherent neutron-scattering cross 0.008 -
section. An exact equation for this quantity has the same gle)
form as Eq/(1a) with ¢, mq, andQ replaced byg;, ms, 0006 |
andQg?=v?qg?, respectively. The essential MCT equation is
again the representation of the kernel as the mode-coupling 0.004 -
functional mg(t) =3, Vg kp@k(t) ¢p(t). The coupling coef-

10°0; @y |

2 |

0
300

2. This finding is in agreement with neutron-scattering re-

The second example is related to the velocity correlator

ficientsVg , are determined by the structure fac&y. The 0002 1
mentioned equations have been derived and solved for the
Lamb-Massbauer factorg= ¢;(t—o) of the HSS in Ref. o
[20]. Details of the discretization can be found in Refl].

We have solved the cited equations ipj(t), and Fig. 16 FIG. 17. Density of stateg(w) of a HSS, calculated for the
exhibits fluctuation spectra for the packing fractign  packing fraction ¢=0.60. The dashed line showg(w)=9.2
=0.60 for three wave vectors around the structure-factorx 107842, describing the density-of-states asymptote at small fre-
peak position. The shape of the peaks is only weaklyguencies. The arrow marks the Debye frequemgy=2309 for the
g-dependent and the intensity varies nearly proportional tdongitudinal sound.
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suppressed as required by the normalization condition. Thexplanations of structural relaxati$®0]. In connection with
found enhancement phenomenon is in qualitative agreemefig. 11, it was shown that they are also not relevant for the
with the experimenta| results reported for silica in F{G.B] explanation of the AOP. Therefore, sound can be discussed
and with the simulation data in RdfL3]. There is a consis- Within the standard procedure of acoustics by introducing a
tency problem for the MCT. The prefactor in the? law ~ Modulus. This procedure comes out within MCT as was ex-
should beg))= w5 [ 1+2(wp /wh)?], wherew), denotes the plained in connection with Eq9), where[1— wK(w)] is

_ proportional to the complex modulus. Consequently, all re-
Debye frequency for transversal sound. Siggevas calcu- g jts on high-frequency sound, discussed in this paper, are

lated without any explicit reference to transversal sound, thénplications of the preceding results fifi(w). In this sense
approximations underlying MCT will lead tgo#9,5. We  one concludes that high-frequency sound is a manifestation
did not study the solutions of the MCT equations for trans-of the AOP. Let us contemplate the scales for frequeacy
versal excitationg20,22 in order to calculatan),. There- and wave numbeq in order to be able to correlate the MCT
fore, we do not know the size of the ergg— g, . Butifone  results with some data. The boson-peak maximum observed
estimateswp=w},, one getsgy=10.2x 108 which is for silica at 1 THz[3] shall be compared with the maximum

close to the valug,=9.2x10 8. This suggests that trans- position wp=75 for the ¢=0.60 results for the AOP. The

versal excitations are taken into account to some extent imf2€St resolution widthl’e,, achieved by the recent x-ray-
S s scattering experiments is 1.5 meV, i.e., in the units of this
plicitly in the formulas form(t).

. . . ._paperl'¢,;~30. The structure factor peak positi@p,.x =
It was already suggested earlier in connection with a dls—l_5 A1 for silica is to be compared with the value near 7

cussion of soft-configuration models for glasses that the bog;, the HSS. Hence the wave-vector unit used is about
son peak should be understood as a result of quasiharmonc ;-1 Scattering experiments with the resolutidi
. XP

oscillations of the system characterized by some distributiopsye been done for silica foq between 1 nm® and

of oscillator potentials[51-54. Obviously, the present 4 nm ! as can be inferred from Ref5] and the papers
theory is consistent with these semi-phenomenological apyoted therein. X-ray-scattering experiments with larger
proaches. In particular, the existence for a low-frequencyare done with a resolution considerably worse than the cited
threshold for the boson-peak spectrum had been predicted In,, ;. Thus the following discussion shall be restricted to
Ref.[52]. In Ref.[44], Raman spectra of glassy systems havewave vectors betweeg=0.5 andq=_2~qp/2. This wave-
been interpreted as a superposition of oscillator susceptibilivector interval corresponds to the interval for the sound fre-
ties analogous to what is formulated in E¢22). But there quency{),=v..q between about 40 and 150, as is shown in
are two qualitative differences between this fit procedure antig. 7.

the present theory. In Re#4], the distributionp(£) is taken The first property of high-frequency sound follows from

as temperature independent, while EB20) for p(&) de- the upper panel of Fig. 10. On Ehe resolution sdalg,, the
scribes the softening of the glass structure upon heating angound-dispersion law i€g*=Q.=v.q. Here the sound
in particular, its instability forT reachingT.. In Ref.[44],  speedv., is the one determined by thg@—0 limit of the
the T dependence of the spectra is introduced by replacinglass compressibilitﬁ(q. The frequency dependence of the
the damping constant by a Debye function quantified by a reactive part of the modulus-1wK’(w) implies deviations
temperature-dependent relaxation time. This viscoelastitrom the strict linear law foﬂg“ax. According to Fig. 7, the
theory leads to a Debye peak as a quasielastic spectrurdeviations are predicted to occur on a 10% level. Thus they
Equations(22) do not lead to a quasielastic Debye spectrumshould be measurable if the resolutibg,, could be reduced
as was explained in connection with Figs. 3 and 5. In Refsby, say, a factor 5. Here some reservation has to be made.
[55,56, the effective-medium theory for percolation prob- MCT does not contribute to the understanding of the struc-
lems is modified to a theory for the displacement susceptiture factorS,, rather it takes this quantity from other theo-
bilities of a disordered harmonic lattice. For the susceptibilies. Errors inS; will cause errors in the MCT results. It is
ity, an expression similar to Eq16) is obtained where notoriously diffi_cult to calcu_late th_e smail-behavior ofS, .
kernel KS®A(w) also describes the self-consistent treatment! Ne Verlet-Weiss theory yields different results gy than
of phonon scattering by the disorder. Even though the equdh® used Percus-Yevick theory, and this causes also a small-
tion for KSCA(w) in Refs.[55,56 is quite different from Eq. 9 behavior off ; which differs from the one exr_nblted in Fig.
(17), the solution looks similar to the dashed line in Fig. 13.1 [57]. Therefore, the Verlet-Weiss theory will also lead to
However, the Rayleigh contribution in R¢&6] is about 16 different 14 which might change the results féry'®. It is
times larger than the result based on Etf). It was criti-  not known how reliably the Percus-Yevick or the Verlet-
cized[54] that in Refs[55,56], the boson peak is constructed Weiss theory describe the structure for packing fractions as
from fluctuations with wave vectorg< qp since thereby the large as 0.60.
role of long-wavelength fluctuations is overestimated. Hence If one smears out the spectruf(w) shown in Fig. 10
the cited harmonic-lattice theory does not appear to be conwith a resolution curve of widtl',,,, one gets a result which
patible with the theory studied in this paper. is nearly w-independent within the dynamical window of
Sound is obtained due to the interplay of inertia effectsinterest:v2K”(w)=vy. This explains the second property of
and stresses, which are built up due to compressions. Thagh-frequency sound reported for the x-ray-scattering re-
interplay is governed by the conservation laws for mass andults of silica[4,5] and other system§1,7,8: the sound
momentum. The low-lying sound excitations interfere with damping exhibits the hydrodynamic wave-vector dependence
other low-lying modes such as structural relaxation and the“q:yqz. Consequently, one can describe the whole mea-
oscillations building the AOP. Sound modes with wave vec-sured spectrum by the damped-oscillator formuéa and
tor g=qp and their interactions are not important for the (6b) [1,2,5, albeit up to some background. The latter appears
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as white if viewed with resolutio’e,,,. Naturally, it is dif-
ficult to separate this background from the one caused by
other effects of the experimental setup. If one acknowledges
the frequency dependencekfw), exhibited in Fig. 10, one
concludes that the formuléqocq2 is oversimplified. Figure 8
demonstrates the prediction that a reductionl'gf, by a S
factor of 3 should be sufficient to detect an increasd’of
above thel“qocQ[]'“aX2 asymptote ifq varies between 0.8 and
2.

A crucial experimental finding is that the damping param-
eterI'y does not vary much with changes of temperatures. 0
This showd 4,7] that the sound damping mechanism cannot
be due to anharmonicity-induced mode decay as known for
phonons in crystals, nor due to structural relaxation effects as FIG. 18. Dynamic structure factoB(q,w)=S;®q(w) of the
studied in Brillouin-scattering spectroscopy of glassy liquids.HSS for a packing fractiog=0.60 as a function of the wave num-
The fast sound detected by neutron scatteri6g§] and ber g at some fixed frequencies. The Debye vector igp=4.08;
molecular-dynamics simulatiofs9] in water, for example, tveshold and maximum of the boson peak are located mear
occurs in a dynamical window where water exhibits its ~ > 2nd =85, respectively(compare Fig. 12 The lines are
a-relaxation process but no vibrations underlying a bosor%JUIdeS to the eye.
peak[60,61]. Therefore, the fast-sound damping in water . . . .
depends appreciably on temperature and this dependence & ducing backgrounds for th_e expenmgntal scattering sig-
be described reasonably within a viscoelastic mdé&él. nais. .Hovx_/ever, as explained |n'con.nect|o'n with the d'ashed
The insensitivity of the high-frequency-sound damping OnIlnes in Figs. 13 and 14, MCT implies a fifth property: for

changes of control parameters such as temperature or densﬁf Tc or ¢> @, there is an effective low-frequency thresh-

is indeed the third specification of the MCT results as showrg.d Qﬁ _fortthfhbagkgrkound. glijCh atth:jeshc_)tld gantbet_useg to
in Fig. 9. In agreement with the assumptions of the phenom= Iscriminate Iné background due to density-Tluctuation dy-

enological theories in Ref52,54, MCT explains the damp- namics from the one due to experimental artifacts. There is a
ing to be due to absorption ,of t,he sound mode by the osciI-m""them""tic"‘IIIy equivalt_ent manner to formulate the physics
lations building the AOP. The AOP depends on Controlof the background, which is better adopted to the present

parameters, as explained in connection with Figs. 10 and 1£roblem [10,17. The dynamical structure factdB(q, )

Thereforel', is not strictly independent of control param- =Sq¢q(w), considered as a function df for fixed fre-
represents the average of the square of the

eters. However, changes of density or temperature primaril{fu€ncy «, , , \ : ,
redistribute the spectrum &€’ and thus the spectrum in the density-fluctuation Fourier components which oscillate with

center of the AOP does not change much. But, if the resolufrequencyw. The coherent contribution to these fluctuations
tion I",, could be reduced, a more subtle prediction could b eads to a peak al,, = w/v... There is only a small contri-

tested. Fo'ﬂg]ax near 140, is g-independent even if the bution for q<q,,, s_ince_it is very difficult to excite long-
system is driven as close to the critical point as shown b)}/vavelength fluctuations in densely packed systems. But there

curven=4 in Fig. 10. For smalleﬂg"ax, the widthT'q in- Is a structureless background fqre-q, extending to high

. . . values ofq. It is caused by the largg-density fluctuations
creases with decreasing and this is due to the appearance . :
of the quasielastic relaxation peak I§f(w). But for larger produced by the distortions of the wave front due to the

. arrested amorphous glass structure. Figure 18 exhibits a

N . "WCT result for the HSS, which is in qualitative agreement
¢; in this case the softening of the system reduces the denS'With the simulation results reported in RELO]

of states for high-frequency-sound-decay processes. Let US s ghecified MCT results for high-frequency sound and

"fie AOP can be described well by the combination of the
solely based on the wave-vector and control-parameter de-

pendence on the structure facty. The explanation of the elementary formulag9) and (20) with K(w)~K(w). If re-

modulus and its drift with control-parameter changes iSgimes are considered, where relaxation can be ignored com-

specified semiquantitatively by the three numbers onlyPIetely, one can use EG20D) with »=0. In this case, only
which are specified in connection with Eqg0) and (21).  the two parameter® andw, need to be specified in order to
Therefore, our results are predicted to be valid for all sys-quantify the result. FunctioK (w) replaces the damping pa-
tems with a structure factor similar to that of our HSS modelrametery of the hydrodynamics-theory result, Ed§). In-
in particular for Lennard-Jones systems or van der Waalgoducing the third parameter, the range of applicability of
liquids such as, e.g., orthoterphenyl. the results can be extended so that structural-relaxation pre-
The AOP ofK”(w) causes via Kramers-Kronig relations cursors are included. We suggest using the cited formulas for
a frequency-dependent reactive p#t(w). This implies an analysis of inelastic-x-ray-scattering data for high-
that the sound resonance cannot exhaust the spectrum. Cdrequency sound and of data for the evolution of the boson
trary to what holds for hydrodynamic sound, there must be geak in glassy systems.
background spectrum. This is the fourth feature specified for The derivation of the MCT equations is definitive and
high-frequency sound in Sec. I. Obviously, the detection ofeads to a well-defined model for a nonlinear dynamics. The
such a background is difficult in view of many other reasonspoint of view adopted in this paper is the following: results

0.0001

(=1




PRE 61 EVOLUTION OF VIBRATIONAL EXCITATIONS IN . .. 605

for the model are derived to provide explanations of previ-system, v, could be calculated in the binary-collision ap-
ously unexplained features of the dynamics of liquids andoroximation. The third unsolved problem is the evaluation of
glasses and to predict new results to be tested by future ey, for the dense systems under consideration. Such a friction
periments. However, the “approximations” leading to the term would imply an additive correction to the friction con-
mode-coupling expression for the fluctuating-force kernelstanty in Egs.(20) and(22). If the resultingr would be too
Egs.(2), are uncontrolled and therefore the range of validitybig, the AOP could disappear in favor of a quasielastic spec-
of MCT is not understood. Let us conclude this paper byyym due to overdamped oscillations. Whether this happens
pointing out four open questions concerning the foundatloqnight depend on the structure of the system. As a fourth

O.fbMC.T’ V;’h'Ch, are of p_?Lt'CLf‘,lar rele\gl':mce for the Stuhdy otf) unsettled question, a cutoff problem has to be mentioned. For
vibrational excitations. The first problem concerns the aby,q large packing fractio@=0.60, the results of our calcu-
sence of any influence of transversal excitations on the d

! Yations would change somewhat if the used cutoff wave vec-
|r1&_1n;]|f:allstructure fa;:t(f)r. Tt?]e resuglﬂa) andf(18) Ifor Rtayg | tor g* d=40 were increased. This is due to the slow decrease
eigh's faw account for the scatlering ot -a longitudinal ., ».qs zero of the direct correlation functiog of the HSS
phonon into some other longitudinal wave, while the ex-

ted tribution due t ion into © I gjr g tending to infinity. Since the introduction of a cutoff is
pected contribution dué to conversion Into fransversai soun quivalent to a softening of the hard-sphere potential, it is
waves is missing. Similarly, the spectrum of the AOP is duec

t0 lonaitudinal itati | hile Horbaokt al. [18 onceivable that in the stiff-glass limit our model is rather a
0 Oqgtlhutltna exc allonsdon Y, f\IN ne t?]r i al.[ ]k T model for argon than for hard spheres. It would be desirable
report that transversal modes influénce the boson peak. QS examine whether this cutoff dependence disappears if a

second problem concerns the mode-coupling approXimatiop,,, entional regular interaction potential is used. A serious

{_or the ;IL‘J]ctuatmg-f?rce Iéergehq(té f20t; Sholg times. Fort_a bottleneck for such examination is the necessity to obtain
ennard-Jones system, q23) and(2b) yield an overesti- reliable results foc, for strongly supercooled liquids.
mation of m,(t=0) compared to the values known from

Monte Carlo results. A procedure for eliminating this prob-
lem was suggested in Rg62], but it is unclear whether it
can be used for supercooled systems. One also expects that ACKNOWLEDGMENTS
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